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CHAPTER 4 
ESTIMATING EXTREME DISPLACEMENTS UNDER A LOMAX GENERALIZED 

LINEAR MODEL FRAMEWORK: THE ROLE OF SAMPLE SIZE AND THRESHOLD 
CHOICE 

Extreme value theory is a statistical discipline that focuses on describing and 

quantifying the stochastic behavior of a given process, unusually large or small events, 

beyond what has been observed, and the theory provides a class of models to 

extrapolate and estimate these extremes (Coles 2001). Extreme value theory has been 

commonly used in financial and risk analysis (Gilli and këllezi 2006), hydrology (Renard 

and Lang 2007, Towler et al. 2010), metereology (Burke et al. 2010), and most recently, 

cryptocurrencies (Gkillas and Katsiampa 2018). It is not surpriging that given the 

situation with the climate crisis, modeling and prediciting extreme events has become a 

priority (Perera et al. 2020). In the case of ecology, extreme value analysis was first 

suggested by Gaines and Denny (1993) given that many questions in biology were 

focused on analyzing the extremes rather than central tendencies. Since then, 

ecological approaches using this branch of statistics have been used to detect rare 

species (Cunningham and Lindenmayer 2005, MacKenzie et al. 2005, Mao and Colwell 

2005), estimate the probability of rare events (Edwards et al. 2005), ecological 

distrurbances (Dixon et al. 2005, Katz et al. 2005), animal movement (Wijeyakulasuriya 

et al. 2019), and long-distance seed dispersal (García and Borda-de-Água 2017).  

A Brief Introduction to Statistics of Extremes in Ecology 

The statistical modeling of extremes usually follows two approaches depending 

on the data available and the questions being asked. The first approach is a Block 

Maxima (BM) approach, in which the maximum (or minimum) observation for each 

independent study unit is selected and a Generalized Extreme Value (GEV) distribution 
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is used to model these maxima (or minima). The second approach is focused on 

threshold models, Peak Over Threshold (POT), in which for all the data considered, a 

threshold is (arbitrarily) chosen and observations beyond that threshold are modeled 

using a Generalized Pareto (GP) distribution. The choice of approach is based on the 

characteristics of data and assumptions of independence. It is worth noting that both of 

these approaches are related and that given the cumulative distribution for the 

Generalized Pareto family with shape 𝜉 and scale 𝜎 parameters: 

F(𝑥) = 1 − (1 +
𝜉 𝑥

�̃�
)

−1
𝜉 ⁄

 (4-1) 

defined on {𝑥: 𝑥 > 0 and 1 + (𝜉 𝑥 /�̃�) > 0} and with  �̃� = 𝜎 + 𝜉(𝑥 − 𝜇) an approximation 

between the GEV and GP can occur, where values over a threshold excess (location, 𝜇) 

modeled with a GP distribution have parameters determined by an associated GEV 

distribution (further details found in Coles 2001).This means, that for data arising under 

a BM design, if the data over a threshold excess is analyzed, the estimation of the tails 

under a GP model should approximate the estimation under the BM approach using a 

GEV distribution. This is useful in ecology, as the independence of study units and the 

size of the blocks is not always known, and so a POT approach to the combined data 

can be used. An example of this situation is the data considered in the previous 

chapters, where individual animals belong to a social group, and thus the independence 

of their movements is not fully understood in relation to other group members, or if there 

is no information regarding social group. Additionally, a BM approach is ‘wasteful’ as it 

only uses the maxima or minima, discarding all other observations which might also 

include more information about the extremes (Coles 2001).  
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However, the choice of threshold in the POT approach also presents challenges, 

and it encompasses finding the right balance between bias and variance in the 

estimation, given that the higher the threshold is chosen, the less data is available for 

estimation and higher uncertainty in model parameters. Current approaches to selecting 

a threshold include visual analysis of mean excess plots or evaluating models across a 

large range of thresholds and selecting the highest threshold possible with the lowest 

variance for the estimators. These approaches have been implemented in the r package 

‘extRemes’ (Gilleland and Katz 2016), but the choice of threshold is still subjective to 

the user and visual assessment. Newer approaches suggest the use of marginal 

thresholds and model evaluation (Kiriliouk et al. 2019) but have high data requirements, 

as they are based on stock market information, and thus ecological data does not 

always fulfill those requirements.  

A problem that remains unexplored in the ecological literature is whether these 

simple probability models can accurately describe the tail behavior of complex 

ecological processes, and in particular, dispersal distances.  Typically, the statistical 

features (bias, variance, mean squared error) of the estimators of a model parameter, or 

the tails of a distribution, are analyzed in simulation studies by generating random 

samples from these distributions and then assessing their bias with respect to to the 

true parameter values used to run these simulations.  However, in ecology as in many 

areas in biology, these statistical models are typically misspecifications of the real and 

often complex biological processes, and thus whether or not we can obtain accurate 

descriptions of the tail behavior of complex movement or dispersal processes remains 

an open challenge.         
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In this paper, we use a theorical simulation approach to understand how simple 

extreme value distributions models can estimate the true tails of complex underlying 

processes that generate data. In particular, we use finite model mixtures to explicitly 

simulate and specify underlying heterogeneity between theoretical subpopulations. We 

then estimate tail probabilities using two approaches:  fitting the GPD using a POT 

approach and fitting a special case of the GPD with only two parameters, the Lomax 

distribution, not using a POT approach but using all the data in the sample.  

To this exploration, we vary both, sample size and the right-tail quantile whose area 

(probability) to the right of it is to be estimated.  Finally, we employ a well-known linear 

bootstrap bias-corrrection and evaluate its utility to correct the bias in the estimation of 

these right probability tails. 

Methods 

Description of Data Simulation Using a Finite Mixture Model 

To describe the complexity of underlying processes generating ecological data, 

we used a finite mixture model framework with four mixture components and varying 

mixture weights. In finite mixture models (FMMs) the resulting distribution is a weighted 

sum of other probability densities, called components, and the weights can be 

determined by relevant covariates (McLachlan et al. 2019). Finite mixture models are 

commonly used in ecology since they allow for subpopulations to contribute to an 

overall probability density, or to incorporate hierarchical complexity to a resulting 

distribution. They have been used to describe seed dispersal kernels arising from a mix 

of dispersal mechanisms (Russo et al. 2006), changes in behavior and animal 

movement (Morales et al. 2004, Tracey et al. 2013), distribution of tree diameters 

(Jaworski and Podlaski 2012), and even the effect of rare species on measures of 
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species richness (Mao and Colwell 2005). Thus, for our simulation, we chose a simple 

finite mixture, with four components following a Lognormal distribution and increasing 

weights (Figure 4-1): 

𝑓(𝑥) = ∑ 𝑤𝑖
4
𝑖=1 ⋅ 𝑔𝑖(𝑥), where 

 

𝑔𝑖(𝑥)~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(μ, σ), and 
(4-4) 

w1 < w2 < w3 < w4 
 

 From the mixture, we generated a dataset with 50,000 distance observations, which we 

used as our simulated truth and will refer to as the real population from which random 

samples of different sizes where drawn and subsequent estimation of tail probabilities 

was carried. Although we simulated four scenarios by varying the mean and standard 

deviation of the mixtures (Figure 4-5), in the main text we focus on results for the 

scenario described in Figure 4-1. 

Testing Variation in Sample Sizes and Levels of Long-Distance Estimation 

We set up our testing framework and evaluated parameter estimates of the tail 

for seven different levels at six different sample sizes. The underlying reasoning for this 

is that the estimation of rare events, whether that is species or movements, is 

dependent on sample size (Soetaert and Heip 1990). We assume that because the 

probability of extreme events is so low, that increasing sample size would increase the 

likelihood of extreme events in the sample and thus improve parameter estimation of 

heavy-tailed probability models. We established sample sizes at 80, 200, 500, 800, and 

1600 samples, which were drawn from the 50,000 observations from the mixture 

described in the previous section. With these samples, we estimated the probability of 

different levels of extremes (or right-tailed quantiles) to understand how the different 
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model fitting approaches performed. The levels tested were the same for all scenarios 

and with each model we calculated the probability of events happening beyond the 

chosen distance level. In other words, we assume 𝑌 is a random variable describing 

distances sampled, and we estimate the probability that 𝑌 will be greater than a chosen 

distance level 𝑦: 

𝑃(𝑌 ≥ 𝑦𝑖) = 1 − 𝑃(𝑌 ≤ 𝑦𝑖) 
(4-5) 

which is essentially the completementary cumulative distribution function tested at 𝑦𝑖  for 

𝑖 =  50, 100, 150, 250, 500, 750, 1000, where 𝑖 are the distance levels or chosen right-

tailed quantiles. This function is often referred to also as survival function or reliability 

function, depending on the field. In the rest of the text, we refer to the true proability of 𝑌 

being greater than the chosen distance level as theta, 𝑃(𝑌 ≥ 𝑦𝑖)  =  𝜃𝑖, and it is 

calculated from the 50,000 observations generated by the mixture model in the previous 

section. Estimates of this probability are referred to as theta hat, 𝜃𝑖, depending on the 

𝑖𝑡ℎ distance level being estimated. The process to estimate these tails involves fitting a 

probability model to the sample, estimating the parameters via maximum likelihood, and 

using those parameters for the survival function in order to calculate 𝜃𝑖 = 𝑃(𝑌 ≥ 𝑦𝑖). 

Description of Probability Models Used 

The Lomax Distribution for Individual Heterogeneity 

The Lomax distribution is a heavy-tailed probability distribution, also known as 

Pareto type II, and is commonly used in econometrics due to its origin in modeling 

business failures (Lomax 1954). More recently, variations and extensions of this 

distribution have been applied to bladder cancer data (Rady et al. 2016) and more 

recently in our lab working group to model Gopher tortoise survival data. The Lomax 
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distribution is a shifted Pareto distribution, which gives it support starting at zero, and it 

arises as a mixture of exponential distributions where the rate parameter is Gamma 

distributed. The relevance in an ecological context arises from incorporating individual 

variation to animal movement models. In Chapter 2 of this dissertation, we modeled 

animal movement as a random walk where step lengths were drawn from an 

exponential distribution. In scenarios where individual variation was incorporated, the 

exponential distribution’s parameter, the rate, λ, varied for each individual informed by 

the data. In a Lomax distribution, this rate is drawn from a Gamma distribution, where its 

scale, 𝑘, and rate parameters, 𝛼, can be used to describe this individual variability. 

Following this reasoning, the resulting probability density model is: 

𝑓(𝑥) = ∫ 𝜆
∞

0

 e−𝜆𝑥
𝛼𝑘

𝛤(𝑘)
𝜆𝑘−1 e−𝛼𝜆𝑑𝜆 = (

𝛼

𝑥 + 𝛼
)

𝑘

(
𝑘

𝑥 + 𝛼
) 

(4-2) 

which corresponds to the probability density of a Lomax distribution. Therefore, if we set 

out to estimate the probability of extreme movements or displacements, while 

incorporating individual variability in movement, the Lomax distribution seems like a 

good candidate.  

 
The Generalized Pareto as an Exponential-Gamma Mixture 

 As mentioned in previous sections, the GP distribution is a family of distributions 

used to describe different tail behaviors with a peak over threshold approach. The GP 

distribution, as described by equation 4-1, offers great flexibility in the description of the 

tail. Specifically, the value of the shape parameter 𝜉 determines the domain of attraction 

under which the tail behavior falls (Beisel et al. 2007), therefore with 𝜉 > 0, the 

estimated distribution falls under a Fréchet (heavy-tailed) domain, with 𝜉 =  0, the tail 
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behaves as an exponential distribution, and with 𝜉 <  0, it falls under a Weibull 

distribution domain. The GP distribution can also arise as an Exponential-Gamma 

mixture, like the Lomax distribution, following: 

𝑋|Λ ~ Exponential(Λ), and 
 

Λ~𝐺𝑎𝑚𝑚𝑎(k, α), then 
 

X~GPD(ξ = 1/k, σ = α/k) 
(4-3) 

with the location parameter of the GP distribution set to zero (𝜇 = 0), and the additional 

restriction that the shape parameter 𝜉, is positive, thus restricting the tail behavior to 

only two of the extreme value domains. This equivalence shows that the Lomax 

distribution is a special case of the GP, with support in zero, and limited to exponential 

and Fréchet domains for the tails. In the case of a Lomax distribution, where the GP 

distribution has the location parameter set to zero, the choice of threshold in the GP is 

circumvented.  

Parameter estimation for Lomax and GP distributions 

Parameter estimation for the Lomax and GPD models were performed using 

maximum likelihood with custom built functions or using the R package extRemes 

(Gilleland and Katz 2016). We estimated parameters for each of the samples drawn 

under the different sample sizes described above. Although all fitting procedures 

correspond to maximum likelihood, we implement three different strategies to do the 

model fitting.   

The first strategy was based on fitting the Lomax model using the traditional 

likelihood function (the joing probability density function of the observations) using all 

the data from each sample. That is, if we had drawn a sample of 80 distances from the 
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population data, then all 80 observations were used to fit the Lomax distribution, and 

each one of these distances was considered a sample regardless of individual 

provenance.  Writing the likelihood function as the joint probability density function 

assumes that these distances (or observations) are independent and identically 

distributed random samples. 

The second strategy involves phrasing maximum likelihood estimation using a 

more general framework that is easily adaptable to different situations.  This framework 

corresponds to a Generalized Linear Model (GLM) fitting approach in which the 

distribution in question is re-parameterized so as to phrase it in terms of its mean and 

factors shaping its mean. Under a GLM approach, probability distributions are fitted by 

reparameterizing the mean of the distribution as a general function of a linear model of 

interest: μ =  𝑿β where the mean of the observations, μ, is written as a linear 

combination of covariates in matrix 𝑿 with β coefficients. Mimicking what is typically 

done for Poisson-distributed GLMs, in the case of the Lomax distribution, we 

reparameterized the likelihood function so that its expected value, 𝐸(𝑋) = 𝛼/(𝑘 − 1) is 

equal to 𝑿𝛽.  

The third and final maximum likelihood fitting strategy was implemented with the 

GP distribution using a peak over threshold (POT) approach, in which the choice of 

threshold was based on each specific sample’s quantile. Therefore, for each sample, 

we calculated the 0.5 quantile, and used that value as the location parameter, 𝜇 =

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(0.5) to fit a Generalized Pareto distribution. As we mentioned above, threshold 

choice for POT models can be subjective and based on the reseracher’s visual 

evaluation of mean excess plots. By setting the threshold to the sample’s median, we 
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try to evaluate how parameter estimation with an approach that takes the sample’s 

largest half performs when compared to the Lomax approach that considers all the data 

in a sample. 

Bootstrap-Based Bias Correction for the Lomax GLM Framework 

For all three fitting strategies, the estimated parameters are then used to 

calculate the probability of observations occurring at each of the distance levels 

proposed, using each of the model’s cumulative distribution functions. We compare the 

tail estimates of each model to the true proability of the tail as the difference in the log 

estimates of theta and theta hat: 

 𝑙𝑜𝑔(𝜃𝑖)  −  𝑙𝑜𝑔(𝜃𝑖) 
(4-6) 

which, when considering 𝐸[𝑙𝑜𝑔(𝜃𝑖)]  −  𝑙𝑜𝑔(𝜃𝑖), we are essentially calculating bias in the 

estimation of the tail. We use a bootstrap-based bias correction to improve the 

estimates of the tail: 

𝑏𝑖𝑎�̂� =
1

𝐵
∑(θ𝑖

∗ − θ�̂�)

𝐵

𝑙=1

 
(4-7) 

where B represents the number of bootstrap replicates of the data, and θ𝑖
∗ is the tail 

estimate for each bootstrap sample, thus the corrected estimator, �̅�, follows: 

𝜃�̅� = 2𝜃𝑖  −  
1

𝐵
∑(θ𝑖

∗)

𝐵

𝑙=1

 
(4-8) 

We carried out parametric and nonparametric corrections. In the nonparametric version, 

from the sample from which 𝜃�̂� was estimated, we sampled with replacement, refitted 

the Lomax model, and estimated 𝜃𝑖
∗. In the case of the parametric version, from the 

sample from which 𝜃�̂� was estimated, we used the alpha and k parameters estimated to 
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generate a random sample, and from that sample, we refitted the Lomax model and 

estimated 𝜃𝑖
∗. Then, we compared the corrected estimator 𝜃�̅� to the true probability of the 

tail 𝜃𝑖. 

Results 

We present in this section the results associated to the estimation of the tails 

using the three different fitting methods: the simple Lomax, the GLM Lomax, and the 

Generalized Pareto using a quantile threshold. The simulated data from the mixture 

distribution (Figure 4-1) was leptokurtic, with the maximum simulated distance at 1312 

units, a median of 32 distance units, and a mean of 41 distance units. The true 

probabilities of the tail, the true 𝜃, are shown in Table 4-1. Although the values towards 

the more extreme distance levels are low, the data for the population show two 

distances greater than 750 distances units, and two distances over 1000 distance units, 

out of the 50,000 simulated distances.   

Tail estimates, 𝜃, were compared across the three fitting methods, and the log 

ratio between the estimate and the true tail value, log 𝜃
𝜃⁄  , is shown in Figure 4-2. In the 

case of the simple Lomax estimation, we observe that with increasing sample sizes, 

estimates tend to very large numbers. Further exploration of the estimates showed 

numerical estimation problems (Figure 4-3), where the maximum likelihood estimators 

of the simple Lomax model tended to infinity with increasing sample sizes, a common 

numerical problem when dealing with only positive parameter space. The 

reparameterization of the simple Lomax model into the GLM framework actually solves 

the numerical optimization and thus we focus on this approach instead. Panel B of 

Figure 4-2 shows that the tail estimates under the GLM Lomax model are biased, and 
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such bias increases as we estimate under more extreme distance levels (150 distance 

units vs 1000 distance units). It also shows that increasing in sample size does not have 

a clear effect in correcting this bias. Finally, the Generalized Pareto POT approach 

shows a similar trend with regards to estimating more extreme distance levels. 

However, in the case of the Generalized Pareto approach, an increase in sample size 

does have an effect on the estimates, and reduces the variation in the estimates, 

although they continue to be biased.   

The bias correction performed for the Lomax distribution had no effect on the 

estimates, and in some cases, it produced outliers and increased the bias of the tail 

estimates. On the other hand, the linear bias correction for the Generalized Pareto with 

the quantile threshold had a beneficial effect on correcting the bias of the tail estimates 

(Figure 4-4). The nonparametric bootstrap correction effect varied across sample sizes 

and distance level estimation. At low distance estimates, both the original and corrected 

estimates had similar performance and were slightly biased, with overestimation of the 

tail. At higher and more extreme distance levels, the bootstrap correction decreased the 

variation in the estimators and the number of outliers. At smaller sample sizes, the bias 

correction tended to slightly overestimate the tail probabilities for extreme distance 

levels (n = 80, 200 at distance level 1000), whereas at greater sample sizes the bias 

correction continued to underestimate the tail probability (n = 1000, 1600 at distance 

level 750 and 1000).  

Discussion 

Estimating rare events in ecology is an important and statistically challenging 

process. Often limited by small sample sizes, accurately estimating the probability of 

occurrence of rare events becomes difficult, and the smaller the probabilities of 
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occurrence, the higher the uncertainty in these estimates. In this study, we focused on 

exploring different model fitting approaches to estimate the true tail of a population 

using probability models that constitute simple phenomenological descriptions of 

complex biological processes. Specifically, we evaluated how, when data is simulated 

from a complex mixture of behavior/distance traveling model, an increasing sample size 

can correct for the bias in tail estimates under a generalized linear model framework 

with a Lomax distribution and all the distance observations in a sample and using a 

Generalized Pareto distribution with a threshold set to the sample’s median, which 

implies using only the distance data beyond this threshold.  

Overall, we found that both model fitting approaches result in biased estimators 

of the tails, and that bias increases when estimating the probability of the most extreme 

events. The simple bootstrap correction had no effect on the estimates under the GLM 

Lomax estimation, but the correction decreased the variation in the estimates of the GP 

approach. Additionally, increasing sample size did have an effect on the estimates using 

the GP approach. It is worth noting that both probability models, the GLM Lomax and 

GP, are related, and that the Lomax distribution is a special case of the GP distribution, 

with the threshold set to zero. This means that the Lomax distribution is essentially a 

simplication of the GP and by having no threshold, parameter estimation is done with a 

likelihood function that uses all the data in a sample. Given that both approaches result 

in biased estimators, we can conclude that although they are not good descriptors of the 

overall distribution of distances generated under the complex process simulated with 

the mixture distribution they still provide reliable estimators for the tail probabilities. 

Indeed, if the emphasis is put on the estimation of the tail of the distribution of the true 
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population, one of the estimation approaches we tried, the POT for the GP model 

performed relatively well for various sample sizes, where the bias was mostly 

dependent on how far the extrapolation was performed to estimate the most extreme tail 

of distances. In other words, given the sampled data and the fitted model, bias occurred 

when trying to estimate the most extreme distances, such as the probability of having 

events beyond 500 distance units. This is not completely surprising given that only 22 

out of the 50,000 distances were found beyond 500, and some uncertainty is expected 

given how rare these events are. In this case, increasing sample size had a clear effect 

on reducing that variation in the estimators, and in fact at a sample size of 500, the 

estimators had the least amount of bias (Figure 4-4). We observed similar trends for the 

other scenarios simulated (Figure 4-5). 

Threshold models, like the Generalized Pareto presented in this work, provide 

useful aproximations to the tail of movement distributions by fitting models only to the 

observations over a high threshold. However, deciding on which part of the data to 

consider as the tail, in other words deciding on a threshold for the model given the data, 

relies on visual and exploratory techniques before fitting of models. Current approaches 

to selecting a threshold imply finding a balance between the bias and the variance of 

the estimators, done visually by fitting the models across a range of different thresholds 

(Coles 2001). When too low of a threshold is selected, then the model is likely to violate 

the assumptions for asymptotic behavior of the model, and thus leads to bias (Coles 

2001). However, when the threshold selected is too high, the sample size used for the 

estimation is reduced and the resulting estimators show a high variance. Given the 

importance of the threshold selection for POT frameworks, this is an active area of 
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research in statistics and particularly climatology (Langousis et al. 2016, Zhao et al. 

2019). However, the complexity of the approaches currently being developed for 

threshold selection tend to be based on systems with high numbers of data and time 

series, such as rainfall and pollution (Tencaliec et al. 2020). In our work we suggest a 

simple process of threshold selection by using the median, and nonparametric bootstrap 

correction of the bias with the threshold set to the median of the bootstrapped samples 

as these settings seem to perform well. Although the simple bootstrap correction does 

not completely correct for the bias, it still provides close estimates of the tail 

probabilities, and thus, our approach can still bring novel understanding of the relevance 

of heavy-tailed phenomena for ecological processes when the underlying mechanisms 

are not known. 

The mechanism-free approximation of the Generalized Pareto can provide a 

close enough estimate even when the complex underlying mechanisms generating the 

data are not completely understood.  Ecology as a field is a heavily quantitative and 

mathematical subject (Pielou 1969), providing great opportunities for the development 

of biostatistical tools and modeling of species populations and communities (Gotelli and 

Ellison 2013). However, despite recognizing the importance of the variance in ecological 

processes (Benedetti-Cecchi 2003, Violle et al. 2012) the majority of models describing 

community and population dynamics focus on the average trends (Holyoak and Wetzel 

2020). Many ecological questions are actually concerned about the extremes in a 

variable (Gaines and Denny 1993), and more relevant now under drastic and changing 

climate conditions (Perera et al. 2020), we must consider the deep consequences that 

extreme events, in our specific case extremes of movement and dispersal, may have on 
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ecological dynamics. If ecologists, as a scientific community, shift a focus towards the 

understanding and prediction of rare events, and the impacts of these over general 

community dynamics, then we need to provide better guidelines regarding the 

estimation of these rare events and how extreme value theory is a powerful tool for this 

purpose. In our specific case of animal-mediated seed dispersal, we have shown that 

incorporating individual variation in animal movement has consequences for the 

frequency of rare long-distance seed dispersal events (Chapter 2 of this dissertation). 

However, with the work we’ve provided in this current chapter, we are able to show that 

despite the complexity of the underlying generating mechanisms, using a simple and 

mechanism-free probabilistic model, such as the Generalized Pareto POT approach, we 

can gain significant understanding of the tail behavior of the distribution and closely 

estimate the probability of rare events.  

 

Although understanding the complexity in biology and developing intricate 

models to dissect such complexity is necessary, in this work we also show the 

advantages of using biology-free probabilistic models to understand the occurrence of 

extreme events. The model fitting approaches described in this chapter are useful tools 

that can be readily used with available data to generate a range of projections and 

estimates of the tail under different scenarios, complementing other models that aim to 

describe the complex mechamisms giving rise to a variety of ecological dynamics. 
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Figure 4-1. Mixture distribution scenario discussed in the main text. Panels A and B 

describe each of the mixture components, which are generated using a 
lognormal distribution function. Panel C shows the resulting mixture based on 
the weighted mixture components, for which weights increase from the blue 
component to the orange one. Panel D shows the histogram for the 50,000 
samples drawn to represent the true population. Dashed red lines in panel D 
represent the different distance levels evaluated when estimating parameter 
theta, the tail of the distribution.  

 
 
Table 4-1. Resulting probabilities of the tail for the true population. The distance level is 

the distance chosen for each test. The second column shows the number of 
observations above the chosen distance level. The last column, theta, shows 
the probability of events over the chosen distance level, calculated as the 
second column over the total population observations, which is 50,000. 

Distance level Observations over distance level True theta 

50 14069 0.28138 

100 2838 0.05676 

150 812 0.01624 

250 144 0.00288 

500 16 0.00032 

750 4 0.00008 

1000 2 0.00004 
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Figure 4-2. Model approximations to the true tail of the distribution. This figure shows 

the distribution of values of estimated thetas for each model as compared to 
the true theta calculated from the population. Values close to the red line, 
zero, represent accurate approximations, where the difference between the 
estimated tail and the true tail is minimal. Note the log scale on the y axis. 
Boxplots for each case are based on 30 runs for each combination of sample 
size and distance level. Panel A shows the simple lomax distribution with poor 
estimation with increasing sample size and distance level. Panel B shows a 
GLM framework of the Lomax, where poor estimation occurs towards bigger 
distance levels. Panel C shows the theta estimates under a Generalized 
Pareto distribution with a threshold set to the 0.5 quantile of the sample.  
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Figure 4-3. Parameter space for the simple lomax and GLM lomax. Panel A shows the 

aggregated parameter space occupied by both fitting approaches, the simple 
Lomax and GLM Lomax for all sample sizes. Note the x and y axis are in log 
scale and extremely high values. Panel B shows the parameter space under 
the same x and y axis scale but separated by sample sizes. As sample size 
increases, the parameter estimation for the simple Lomax tends to infinity, 
showing a numerical estimation problem in the process.  
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Figure 4-4. Bias corrected estimates for the Generlized Pareto Distribution. A linear bias 

correction using nonparametric bootstrap was performed under the GP 
distribution model. Each panel represents the associated sample sizes used. 
Bias corrected and original estimates are shown side by side in different colors, 
as a ratio of the true theta. Estimation for lower distance levels is close to zero, 
with some overestimation across all sample sizes. With estimation at more 
extreme distance levels, bias generally increases, but the correction does reduce 
bias, and so does increasing the sample size.  
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Figure 4-5.  Additional mixture distribution scenarios tested for the model fitting 
approaches. We explored the effect of changing the mean and standard 
deviation of the components of the mixture. Increasing weights were assigned 
from left (red) to right (blue), where higher weigths contributed more to the 
final mixture distribution. Bias corrected estimators are shown for each of the 
scenarios, aggregated for all sample sizes, where bias is shown to increase  
when trying to estimate the true proportions of the tail with the more extreme 
distance levels. 
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