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CHAPTER 3 
VELOCITY-BASED ANALYSIS OF RADIO TELEMETRY DATA TO EXPLORE 

INDIVIDUAL VARIATION IN ANIMAL MOVEMENT 

Movement is a fundamental ecological process, critical to an animal's biology and 

its interactions with the environment. Animal movement, in particular, plays an important 

role in the structure and dynamics of plant populations through the effects of frugivory 

and seed dispersal services (Côrtes and Uriarte 2013). From the seed dispersal 

literature, a common approach to understand how animal movement contributes to seed 

depositions is to generate seed shadows, or the spatial distribution of seeds for a single 

source plant (Nathan and Muller-Landau 2000). Generally, seed shadows are 

generated by combining gut retention times, the amount of time a seed remains 

ingested by an animal, with animal movement data and environmental covariates to 

understand spatial seed deposition patterns. Usually involving an individual-based 

modeling framework, plant, animal, and environmental information is then used to 

estimate the effects of plant density or habitat loss and fragmentation on spatial seed 

deposition patterns (Levey et al. 2005, Morales and Carlo 2006, Lenz et al. 2011, Jones 

et al. 2017, Pegman et al. 2017). Other studies have focused on incorporating different 

animal behaviors (Russo and Augspurger 2004, Russo et al. 2006, Karubian and 

Durães 2009, Sasal and Morales 2013, Bialozyt et al. 2014) and more recently, 

attention has been brought to the importance of variability in seed disperser 

assemblages (Jordano et al. 2007, Rehm et al. 2018, Zwolak 2018, Snell et al. 2019). 

Despite the complexity of animal movement, models used to estimate seed shadows 

make significant simplifications of the movement processes as the focus is on the 

dispersal of seeds (Côrtes and Uriarte 2013). These models also generalize across 

populations, likely overlooking the important consequences that individual variation in 
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seed-dispersing animals may have for plant populations and communities (Zwolak 

2018). 

The scientific study of animal movement has received significant attention over 

the last decade, with great advances in both the technology to track movement, and the 

quantitative methods used to analyze movement (Nathan 2008, Joo et al. 2020). 

However, the focus has been on trying to analyze how the environment affects 

movement and behavior (Joo et al. 2020), which has led to the development of complex 

quantitative techniques, in particular state-space modeling frameworks. In movement 

data, a state-space process allows us to couple a statistical model for the observation 

method, accounting for errors in sampling or detection, with a separate model for the 

movement dynamics which are determined by the effects of an animal’s behavior or 

responses to the environment (Patterson et al. 2008, Langrock et al. 2012, Auger-Méthé 

et al. 2021). However, from the seed dispersal ecology perspective, the important 

question is how does animal movement influence seed dispersal and thus create 

changes to plant communities? Despite the quantitative progress in the field of 

movement ecology, it has not been translated to seed dispersal frameworks, in which 

animal movement is often modeled as a random walk (Levey et al. 2008, Jones et al. 

2017) or a constant movement rate (Carlo and Morales 2008), ignoring animal behavior 

or individual variability. 

Although movement ecology has developed the tools to analyze complex 

movement, the data requirements do not always align with the movement data collected 

for seed dispersal studies. Movement data collected for studies of seed distribution is 

often collected at scales that correspond to gut passage times (Westcott et al. 2005, 
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Holbrook and Loiselle 2007, Holbrook 2011, Rehm et al. 2019, Nield et al. 2020), and 

so we lack the finer scale resolution necessary to implement more complex movement 

models. Additionally, data collected with radio telemetry devices, especially older ones, 

is subject to environmental variables such as heavy cloud cover, or dense forests, 

which can result in data collection at irregular time intervals, thus complicating the 

application of discrete-time movement models (Jonsen et al. 2003, 2005), and force the 

researcher to rely on interpolation, subsampling, or aggregation of data during pre-

processing. To overcome this, Johnson et al. (2008) proposed using a continuous-time 

velocity process capable of handling irregular time intervals, and incorporated it under a 

state-space framework to estimate parameters and locations. However, their model 

assumes a normal movement process, under which heavy tailed processes (such as 

flight behaviors mixed with smaller movements) are more challenging to handle. 

Additionally, several of the movement models previously mentioned rely on some 

variation of a correlated random walk, under which animal locations are dependent on 

all previous locations, and thus require good time series data and long enough animal 

trajectories with multiple consecutive locations.   

Despite the advances in modeling approaches used in movement ecology, they 

still typically focus on understanding the mean or modal movement patterns and ignore 

the fact that movement patterns may be widely variable even across individuals of the 

same species. Thus these models still do not consider the potentially complex 

population-level effects of individual variation (Spiegel et al. 2017, Zwolak and Sih 2020, 

Shaw 2020). Not surprisingly, the same is true in seed dispersal ecology, where 

individual variation in frugivore behavior or disperser movement patterns have only 
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recently started to be explored (Schupp et al. 2017, Zwolak 2018, Snell et al. 2019). 

Movement ecologists have started to tackle this issue by evaluating the effects of 

varying levels of data pooling, where ‘complete pooling’ is the simplest approach and 

assumes that all individuals are identical and represented by a single set of model 

parameters (Langrock et al. 2012) and thus all individual are included in estimates of 

those parameters, but a 'no pooling' or 'partial pooling' approach, assumes each or 

some individuals have their own set of parameters (Jonsen et al. 2006, Patterson et al. 

2009). However, assuming larger numbers of unique movement parameters quickly 

outstretches the limits of the dta and thus the application of models with high levels of 

individual variation. The decision to pool data or not may come from the modeling 

framework chosen, as frameworks that allow for random effects may have a better 

structure to incorporate this variation than simpler frameworks.  

Our goal in this study was to reanalyze available relocation data with a velocity-

framework to overcome challenges such as irregular time intervals between relocations 

and varying number of observations between individuals. Additionally, to explore how 

individual variation in animal movement can be translated to different parameters on 

movement distributions, we used a data pooling approach and assessed the fit of our 

models. We used a velocity-based approach to analyze radiotelemetry data from twelve 

Pteroglossus pluricinctus (Aves: Ramphastidae) individuals, a major seed disperser for 

Virola flexuosa (Myristicaceae), a tropical nutmeg, and explore the underlying 

differences in movement across individuals. With the data pooling approach, we 

compared the differences in movement at a population, social group, and individual 

levels using complete, partial or no pooling scenarios. Our study also relies on the use 
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of a nonparametric bootstrapping technique to calculate percent support for best fitting 

models and address unequal sample sizes for individuals. We find that incorporating 

individual variation for movement models is highly supported by our work, with strong 

evidence using the nonparametric boostrap. However, when estimating parameters, we 

observe a trade off between the sample size and the number of parameters being 

estimated, with the strength of evidence from the nonparametric bootstrap. Models with 

greater sample sizes and less parameters to be estimated showed better fits but had 

weak evidence to support them.  

Methods 

Empirical Velocity-Based Analysis for the Many-banded Aracari Relocation Data 

We focused the empirical aspects of our study of individual variation on the 

many-banded araçari (Pterglossus pluricinctus), a small toucan in Yasuní Biosphere 

Reserve, Ecuador. We used previously collected data from studies using radiotelemetry 

from twelve P. pluricinctus individuals (Holbrook 2011). Toucans were tracked over 

sessions lasting up to 5 hours per day, with birds located every 15 minutes to the extent 

possible. Animal locations were not recorded automatically, they were estimated by 

triangulation using receivers and hand-held antennas. The choice of the 15-minute time 

interval was based on gut retention times for the seeds of Virola flexuosa, a tropical 

nutmeg for which P. pluricinctus disperses seeds. Further details on field methods can 

be found in Holbrook (2011).  

We used the package `adehabitatLT` (Calenge 2006) in R version 4.0.2 (R Core 

Team 2020) to calculate animal trajectories based on location data, and examined step 

lengths, turning angles, and the time intervals between these observations. Given the 

irregular time intervals for location points (Figure 3-1), we focused on instantaneous 
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velocity estimation, and calculated speed between consecutive relocations by dividing 

the step length travelled by the time interval between relocations. We used a 

permutation approach to examine potential autocorrelations between velocity data 

points (Dray et al. 2010). This is a common approach in movement ecology given that 

successive observations tend to lack independence, something relevant for high 

sampling frequencies. Previous approaches to the data used in this paper had relied on 

estimating overall movement rates as the average distance moved per minute over the 

whole tracking period and thus reducing the number of observations to one movement 

rate per individual (Holbrook 2011). A tracking period includes all the daily tracking 

sessions for an individual, and as our goal was to understand the variation in movement 

between individuals, we developed a framework that allowed us to use each 

observation instead of their average. 

We assumed the framework of a stochastic movement process, uncorrelated and 

unbiased for simplicity (i.e., the turning angles of each step are independent of the 

previous directions, and there turning angles follow a uniform distribution), where the 

length of each step follows a given probability distribution (Gamma, Lognormal, or 

Weibull in our case) thus resembling a continuous-time analog of a random walk, or a 

Levy walk (where the step length follows a power-law distribution). Under this 

framework, given that turning angles are drawn from a uniform distribution, assume 

independence between angles and step lengths. Therefore, we focused on the 

distribution of step lengths, where each observation becomes a measured velocity (in 

meters per minute) estimated as the absolute distance between two consecutive 

locations divided by the change in time following:  
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v(t) =
√(ux(t + Δ) − ux(t))

2
+ (uy(t + Δ) − uy(t))

2

∆
 (2-1) 

 

In this way, we are able to analyze the movement of the animal by using all available 

relocations, despite irregular time intervals or short time series. In Johnson et al. (2008), 

the authors used a bivariate process to describe velocity in both directions, and then 

integrated to determine an animal’s location at time, 𝑡: 

𝐮(t) = 𝐮(0) + ∫ 𝐯(τ)d𝜏
t

0

 
(2-2) 

This integral describes the location at time 𝑡 as the sum of steps determined by 

velocities in each direction plus a starting location at time 𝑡 = 0. Our framework is 

different because of data constraints, where the time series are short and data is 

limited. However, under our framework, with the assumption of uniformly distributed 

turning angles, we can still use the distribution of velocities to estimate the location of an 

animal at a given time 𝑡, and so we focus on estimating the best model to describe 

velocity while incorporating variation among individuals.  

Unlike the estimation of velocities, which require two consecutive relocations, 

estimating turing angles requires a minimum of three consecutive relocations, thus 

making the data even more limited. However, we explored the distribution of angles 

using a simple and commonly used distribution, the Wrapped Cauchy (Morales et al. 

2004, Langrock et al. 2012). A special property of the wrapped Cauchy distribution is 

that as its parameter rho approaches zero, 𝜌 → 0, the distribution becomes a uniform 

distribution for a circle (Hooten 2017, p.163), which aligns with our initial assumption of 

an uncorrelated and unbiased random walk.  
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Estimating Levels of Heterogeneity by Incorporating Data Pooling 

In order to assess the level of heterogeneity in movement between individuals, 

we used a pooling approach (Patterson et al. 2009, Langrock et al. 2012), where we 

varied probability density and parameter values for the distribution of velocities at the 

population, individual, and social group levels. We did this by fitting the models to 

different subsets of the data and then, we proceeded to use Bayesian Information 

Criterion (BIC) to evaluate the relative fit of each of the models. We use BIC as a means 

to compare the relative fit of these models to the data, and the effect of pooling levels as 

the pooling approaches that incorporate individual or group heterogeneity increase the 

number of parameters to estimate with smaller sample sizes.  

The pooling approach used to evaluate the distribution of velocities considers 

separating the data into subgroups and then fitting a distribution to each of the 

subgroups when applicable. The choice of distributions for velocity (gamma, lognormal, 

and Weibull) was based on commonly used distributions in the seed dispersal and 

animal movement literature (Levey et al. 2005, 2008, Morales and Carlo 2006, Will and 

Tackenberg 2008, Morales et al. 2010, Langrock et al. 2012, Nield et al. 2020). In 

particular, the Weibull distribution is a very flexible distribution with a long tail, which 

allows for rare fast movement rates, it also is equivalent to the exponential distribution 

when its shape parameter is equal to 1 (Hooten 2017, P. 162). The overall description 

of the models is as follows: 

“Complete pooling”- CP: This is the simplest approach, in which we assumed that 

the model parameters were identical for all individuals, and thus pooled all the velocity 

data to estimate distribution fits and parameters. Essentially, we assume that the 
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probability density describing velocities, ℎ(𝛔), follows a Gamma, Lognormal, or Weibull 

distribution with a single set of parameters 𝛔 shared by all individuals. 

• Model 1: 𝒉(𝝈)~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑟) where the shape (a) and rate (r) parameters are 
identical for all individuals and across the population.  

• Model 2: 𝒉(𝝈)~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜃) where the meanlog (μ) and meansd 
(θ) parameters are identical for all individuals and across the population.  

• Model 3: 𝒉(𝝈)~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) where the shape (a) and scale (b) parameters are 
identical for all individuals and across the population.  

For each of these models, likelihood calculation, and thus BIC calculation, is 

straightforward: 

𝐵𝐼𝐶𝑖  =  −2𝑙𝑜𝑔(𝐿𝑖)  + 𝑘𝑖 𝑙𝑜𝑔(𝑛) 
(2-3) 

Where 𝐿𝑖 is the likelihood for each of the models: gamma, lognormal, or Weibull. The 

number of parameters for each model, 𝑘𝑖, is two for each of the models, and the number 

of observations, 𝑛, is the same for all since the same dataset is being used to fit the 

three different distributions. 

“Partial pooling” – PP: We used the information available on individuals 

belonging to social groups, and thus grouped the data accordingly to the seven social 

groups identified in the field. Thus, we estimated the best fit movement models for each 

social group and asked whether there was significant movement variation at this level. 

We explored this with four models, in three of which we allowed for heterogeneity in 

parameter values only, and the fourth model, multi-distribution model, we relaxed the 

assumption that movement across groups was drawn from the same probability 

distribution (gamma, lognormal, or Weibull) and allowed for variation in both parameter 

values and probability distribution between social groups. In essence, this multi-

distribution model explicitly recognizes the heterogeneity across groups in both, 
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parameter values and model family. This explicit modeling of the heterogeneity differs 

from fitting an overall random effects model, where it is assumed that both the choice of 

distribution (gamma, lognormal or Weibull) and of its parameter values are random. 

Each of the models is described as a sum of the submodels, where each submodel is 

fitted to the data associated to the social group:  

ℎ𝑥(𝝈) = ∑ ℎ𝑥(𝝈𝑠)

7

𝑠=1

 
(2-4) 

Each model follows: 

• Model 4: 𝒉𝑮𝒂𝒎𝒎𝒂(𝝈)~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑟) where the shape (a) and rate (r) parameters 
vary for each of the social groups.  

• Model 5: 𝒉𝑳𝒐𝒈𝒏𝒐𝒓𝒎𝒂𝒍(𝝈)~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜃) where the meanlog (μ) and meansd 

(θ) parameters are allowed to vary for each social group.  

• Model 6: 𝒉𝑾𝒆𝒊𝒃𝒖𝒍𝒍(𝝈)~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) where the shape (a) and scale (b) 
parameters vary for each social group. 

• Model 7:  𝒉𝒎𝒖𝒍𝒕𝒊(𝝈) =  ∑ ℎ𝑥(𝝈𝑠)7
𝑠=1 , where each social group is characterized by 

the best fitting probability density and their associated parameters. 

For each of the four models, we calculated BIC as the sum of the likelihood of 

each submodel, minus the total number of parameters estimated, and accounted for the 

sample size in each of the social groups. 

𝐵𝐼𝐶𝑖  =  ∑ 𝑘𝑖,𝑠

7

𝑠=1

∙ 𝑙𝑜𝑔 (∑ 𝑛𝑠

7

𝑠=1

)  −  2 ∑ 𝑙𝑜𝑔(𝐿𝑖,𝑠)

7

𝑠=1

 
(2-5) 

“No pooling” – NP: The setup of models for this scenario is similar to the partial 

pooling approach, except that there is no pooling of data, and we allow for 

heterogeneity in parameter values for each of the twelve individuals. Similarly, fo 

models 8, 9, and 10, individuals only vary in their parameters, but the family of the 

distribution is gamma, lognormal, or Weibull respectively. We describe a multi-
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distribution model, which allows for variation in probability distribution and parameter 

values across individuals. 

Given the heterogeneity of sample sizes, we performed a non-parametric 

bootstrapping technique to assess the reliability and support for each model following 

suggestions in (Taper et al. 2021). Essentially, we performed sampling with 

replacement for each of the velocity dataset to generate 1000 data sets for each group, 

corresponding to their pooling level. We then estimated the likelihood and BIC for each 

model under each bootstrap replica and determined the percentage that each model 

was favored by the lowest BIC score. We compared the percent support given by the 

nonparametric bootstrapping to the original model fits and evaluated the variation in 

parameters at the social group and individual levels. 

The justification for this non-parametric technique has its roots on recent 

theoretical and practical contributions by Dennis et al. (2019), Lele (2020a, 2020b) and 

Taper et al. (2021). Additionally, Cox (1958) writes that although an inferential 

statement about the parameters of interest is any statement regarding the form of the 

underlying mechanism or a future outcome, this statement becomes a statistical 

inferential statement only when a measure of uncertainty is attached to it.  The authors 

above show that the estimation of the sampling distribution of the Δ𝐵𝐼𝐶 via non-

parametric boostrap is a much more reliable measure of uncertainty than any such 

measure provided by either classic Neyman-Pearson approaches or a Bayesian 

approach in particular when none of the models are perfect representations of reality, as 

it is the case here.  Under this scenario, the classical Neyman-Pearson approach, which 

depends critically on one of the models tested being a perfectly correct representation 
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of reality, fixes the Type I error probability irrespectively of sample size and thus 

problematically assesses the evidence against the null hypothesis but remains silent 

with respect to the evidence for the null.  The decision of picking an alternative over a 

null hypothesis is not controversial per se, however, the probability of erroneously 

choosing the alternative when the null is true remains stuck at the chosen alpha level 

regardless of how large the sample size is.  Matters get much more complicated when it 

is considered that the original Neyman-Pearson theorem assumes that the data were 

generated under one of the two models but provides no guidance whatsoever in the 

case of model misspecification.  Although detailing the theoretical and practical 

characterizations of the reliability of our non-parametric bootstrap technique is beyond 

the scope of this work, it is important to note that under this approach, the probability of 

making the wrong model choice is controlled as sample size grows large despite model 

misspecification.  Despite knowing in advance that our statistical models are mere 

approximations of reality, our approach based on the BIC is guaranteed to work better 

than the two other main statistical paradigms:  the classical Neyman-Pearson 

Hypothesis testing and Bayesian approaches. 

Results 

Exploring the Variation In Speed and Sampling 

Original data collection methods attempted to relocate individual birds every 15 

minutes (Holbrook and Loiselle 2007),  however it wasn’t always possible to obtain a 

relocation then and so there is considerable variation in the number of observations for 

each individual and the time interval between these observations (Figure 3-1). The 

original dataset contains 907 bird relocations, however, to estimate movement rates or 

speeds, we need at least two consecutive relocations, which translated to 670 
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observations for a total of 12 individual birds, ranging from 32 to 89 velocity data points. 

Although the majority of data points were collected at 15 and 30 minutes (55% and 30% 

of observations, respectively), the time intervals ranged from 15-210 minutes for 

consecutive relocations (a detailed breakup of the distribution of these relocations in 

shown in Figure 3-1). The median number of relocations for each individual was five, 

which converts to four velocity data points, with the minimum being two and the 

maximum 25. These consecutive relocations are the time series used for more complex 

movement ecology models, such as state-space models, and in movement ecology they 

are called bursts. In the case of our data, the burst of 25 relocations for B19 are an 

outlier, as the majority of the data is contained in bursts of 2 to 7 relocations (min and 

third quantiles), and the number of bursts per individual ranged from 5 to 17. To work 

with relative angles, which are used to determine changes in directions, a minimum of 

three consecutive relocations are necessary: the first two relations establish the initial 

trajectory working as the reference, so the turning angle is estimated as the change 

from the initial trajectory to the direction of the third relocation point. In the case of the 

angles, we had 528 data points to work with, across all 12 individuals, with a range of 

25 to 70 angle data points per individual. The histograms in polar coordinates exemplify 

some of this variation in the number of observations (variation in the height of bars) but 

also show the variation in directions (Figure 3-1).  

We estimated probability density curves based on the instantaneous speed data 

following a no pooling, partial pooling, and complete pooling approaches.  By so doing, 

we explicitly characterized the variability across individuals and social groups of the 

many-banded araçari. We found considerable variation in the distribution of 
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instantaneous velocities when comparing the partial and no pooling approaches to the 

baseline of the complete pooling approach (Figure 3-2). The black line in Figure 3-2 

shows the density of velocities generated by the CP approach, which pools all the data 

together and assumes individuals are identical to each other. This CP density dampens 

any variations at the level of individuals and social groups, which is very clear at the tail 

of these distributions, as the CP density line (black) has a significantly thinner tail. 

Although all scenarios presented leptokurtic distributions of speed, some individuals and 

social groups present higher peaks at 120, and 150 meters/min compared to the 

complete pooling density curves.  

Distribution Model Fits Across Pooling Levels 

Under the complete pooling scenario, we found that the lognormal distribution 

fitted speed data the best, relative to the gamma and Weibull models. However, in both 

the partial and no pooling scenarios, the multi-distribution model was the best fitting one 

when comparing within the same pooling category (Table 3-1). However, when 

comparing all models across the three pooling scenarios, the multi-distribution model 

under a partial pooling scenario had the lowest BIC score of all models, followed by the 

lognormal model in partial pooling, and the lognormal under the complete pooling 

scenario. Models incorporating individual variation, the NP scenarios, were the worst 

fitting models, falling behind all PP and CP variations.  

Given unequal sample sizes between the three pooling scenarios, and between 

individuals and social groups, we used a nonparametric bootstrap approach (Taper et 

al. 2021) to estimate parameters under the three different distributions for each pooling 

scenario. In the case of partial and no pooling, parameters were estimated for each 

submodel for every bootstrap, and then using BIC, the best model was selected for that 
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bootstrap. We found that the best distribution for each group varies, and that parameter 

estimates also differred considerably (Figure 3-3). 

Results from the nonparametric bootstrapping technique showed that the best 

sub model selected for individuals or social groups with all the data would generally 

align with the highest percentage of support (Figure 3-4). However, the percent support 

for each model varies greatly across individuals and social groups, with some models 

receiving close to 100% support and aligning with the initial best model from the full 

data run, whereas others received close to 30% support for each distribution (such as 

individual B84) showing that any of the three distributions could likely be used to 

represent the speed for that individual or group. At the larger level, we observed that the 

complete pooling model received high percentage of support for the lognormal 

distribution, something that aligns with the initial distribution fitting. For both the partial 

pooling and no pooling scenarios, the multi-distribution model received 100% support. 

We visualized the distances in BIC units from each model to the best model for all 

bootstrap replicas (Figure 3-5), showing that in general, the gamma distribution tends to 

be the worst model for all pooling scenarios. The distance between the best model and 

the second-best model is considerable for all three pooling scenarios (Table 3-2), with 

an average of 15 BIC units between them. However, with particular focus on the lower 

quantile (0.025), we observe a difference between the NP and PP scenarios and CP, 

which is also evident in Figure 5, where the lower quantile for CP is less than 1, 

providing little or no evidence to support the best model compared to the second best 

model. In the case of PP and NP, the lower quantile has a values close to 7 and 9, 

providing strong evidence for selecting the multi distribution model as the best choice. 
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Wrapped Cauchy Distribution For Angles 

The results from fitting a wrapped Cauchy distribution (Figure 3-6) to turning 

angles shows variation in parameter estimates across individuals and social groups, 

with the estimates using all data under a complete pooling scenario aligning with the 

median values of parameter estimates for the other two scenarios. Previous studies 

have focused on categorizing movement based on step lengths and turning angles, 

determining encamped or exploratory positions (Morales et al. 2004). The simplest 

random walk assumes a uniform distribution of angles, whereas a correlated random 

walks (CRW) occurs when turning angles are concentrated around zero (Turchin 1998). 

In this case, we used a wrapped Cauchy distribution, for which the mu parameter 

determines the mean direction, and the rho the mean cosine of the angular distribution 

(Morales et al. 2004). We observe variation in the distribution of turning angles (Figure 

3-1), which shows also in variation in parameter estimates, however, further analysis of 

changes in directionality to determine type of behavior are beyond the scope of this 

paper. 

Discussion 

The main result of this work is that individual variation in movement behavior very 

likely shapes the rarity of long-dispersal events and as such, may play a key role in the 

structure and organization of tropical communities. Ignoring this individual variation may 

lead to a severe underestimation of the chances with which rare dispersal events may 

occur. These results have wide implications not only for animal movement studies, but 

for general ecological studies of community assembly in complex ecosystems like this 

Ecuadorian tropical forest.   
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One of the key assumptions of classical population dynamics models is that 

populations are large and well mixed, which leads to many of these models 

representing a ‘mean field’ perspective of population or community dynamics. However, 

over the last decade, a growing interest on variation (Violle et al. 2012, Holyoak and 

Wetzel 2020) and the ecological consequences of this variation calls for a shift from 

‘mean field’ approaches to frameworks that integrate individual variation. From both the 

animal movement and seed dispersal perspective, evidence suggests that individuals 

can experience their environment very differently and have responses that are vastly 

different from the average (Matthiopoulos et al. 2015, Zwolak 2018, Snell et al. 2019, 

Schupp et al. 2019). For example, (González-Varo and Traveset 2016) found that the 

thresholds determining ‘forbidden’ species interactions are easily changed when 

including intraspecific variability, having direct consequences over network 

connectance. In our specific scenario, the variability found in the distribution of 

velocities, particularly the variation in the tail end of the distribution, has implications for 

estimating how far and how fast animals may move, and move seeds with them. We 

observe how an approach that ignores differences between individuals dampens the 

variation of the tail distribution of velocities (Figure 2 insert plots, comparison to the CP 

black line). Additionally, an approach that ‘pools’ individuals under the same category 

limits the parameter region occupied, and as we observe in Figure 3 the variation in 

parameter space occupied by different individuals and social groups is much wider than 

that of the complete pooling scenario. Previous work has shown that reducing 

intraspecific variability to a single average can lead to underestimating connectedness 

in biological networks (Poisot et al. 2015), but our understanding of how this variability 
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changes seed dispersal estimates is extremely limited (Snell et al. 2019). Previous work 

by Rudolph et.al. (2022) has demonstrated, from a simulation perspective, that variation 

in animal movement rates translates to seed dispersal kernels, and models 

incorporating individual variation predict a longer and more frequent long-distance 

dispersal events. The animal movement literature has found similar evidence on the 

importance of heterogeneity in individual-level movement for uncovering behaviors and 

scaling to population level patterns (Skalski and Gilliam 2000, Morales et al. 2004, 

Mueller and Fagan 2008, Mueller et al. 2011).  

Velocity Framework Is Useful to Deal With Sparse Data 

The increased interest in individual variability is also tied to the advances in 

tracking technology and the large influx of complex and detailed data, making the 

application of new and more complex statistical approaches a reality (Langrock et al. 

2012, Patterson et al. 2017). The novel statistical approaches developed for animal 

movement are based on time series analysis requiring long series of consecutive 

relocations, a common characteristic of electronic tracking devices. However, the 

radiotelemetry data used in our study was collected in the early 2000s, with handheld 

antennas, as Kimberly Holbrook and her team followed individual birds for 4-5 hours a 

day in dense rainforest. As we presented in the results, the number of consecutive 

relocations for each animal in this dataset is variable, and so is the number of bursts of 

consecutive relocations and the time interval between relocations. The approaches 

used in the past involve calculating movement rates, a single value for each individual 

estimating the average displacement per time unit that was observed during the whole 

tracking season (Holbrook 2011). Using a velocity-framework allowed us to take 

advantage of the available data despite uneven time intervals, to estimate distribution 
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functions that describe the velocities observed, and incorporate the variability across 

individuals and social groups.  

Incorporating Individual Heterogeneity 

Although use of pooling approaches has been suggested in previous research 

they have been done at highly complex levels with state space modeling frameworks 

that allow incorporation of random effects associated to the variation between 

individuals (Patterson et al. 2009, Langrock et al. 2012). However due to the data 

constraints previously mentioned, using a very complex state-space model is not 

possible with our data. Additionally, our model differs from fitting an overall random 

effects model in that it explicitly recognizes the heterogeneity across groups not only in 

parameter values, but also model family. 

To overcome the variability in observations per individuals we use this 

nonparametric bootstrapping approach to calculate percent support for each of the 

models. It’s interesting to see that their own individuals are firmly supported with the 

bootstrap UM to a single distribution model whereas others exhibit more variation and. 

There are many reasons why this variation could happen ranging from the home range 

size nesting status nest roosting location uhm and even the dynamics between social 

groups. Animal personalities comes into place well as more bold individuals can 

probably go farther go faster other places. 

Considerations For Future Research 

Seed dispersal is very complex and context dependent, it requires the integration 

of various fields of research and both theoretical and empirical approaches (Nathan and 

Muller-Landau 2000, Beckman et al. 2020). Recent efforts have been made to bring 

together the perspectives of seed dispersal and movement ecology (Borah and 
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Beckman 2021) to advance the mechanistic understanding of animal-mediated seed 

dispersal. Although the current technology to track animal movement allows for high 

temporal resolution in the data, several seed dispersal studies performed in the last two 

decades have valuable radiotelemetry data that are sparse and have shorter time 

series. The approach we developed in this study is a step towards incorporating 

complexity and individual variation despite the lack of high-resolution data. We have 

shown that individual variation in animal movement can be detected with this approach, 

and that multi distribution models outperform single distribution models, despite 

estimating a higher number of parameters from smaller data frames 
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Figure 3-1. A) Breakdown of the time intervals in the available data for each individual 
tagged bird. The majority of relocation points are recorded at 15 or 30 minute 
intervals. However, the intervals between relocations can get up to 210 
minutes. Each relocation estimates the position of the animal, and a minimum 
of two consecutive relocations are necessary to estimate a trajectory, 
direction, and velocity. B) Distribution of relative angles for each individual. 
Relative angles require a minimum of three consecutive relocations to 
estimate the change in direction. 
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Figure 3-2. Kernel density estimates for the distribution of velocity data at different 
pooling levels, with the dark black density curve showing complete pooling. A) 
Partial pooling representation of the data, where each curve displays the 
density of velocities across a social group. B) No pooling scenario, where 
each density curve is associated to a single individual’s velocity data. 
Individuals belonging to the same social group share the line color. Plot 
inserts show a zoom to the tail of the distribution of velocity data in both 
panels. We observe considerable variation for both partial and no pooling 
scenarios, when compared to the single black density curve that represents 
the complete pooling. Particular focus towards the tails, where certain 
individuals possess much higher densities for large velocities, something that 
gets dampened when considering pooled data for velocity densities. 
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Table 3-1. BIC values obtained for models fitted to velocity data across pooling levels. 
Probability density functions considered included the Gamma, Weibull, and 
Lognormal distributions. Multi distribution models selected the best fitting 
distribution model for each social group or individual, allowing for variation not 
only in estimated parameters, but also in the distribution used. Based on BIC 
values, the best fitting model is the Multi-distribution with Partial Pooling, 
followed by the Lognormal PP, and Lognormal CP. 

 
Model Distribution BIC ∆BIC within ∆BIC across 

CP Gamma 5709.9 25.9 53.3  
Lognormal 5684.0 0 27.5  
Weibull 5698.5 14.5 41.9 

PP Gamma 5699.6 43 43  
Lognormal 5677.1 20.5 20.5  
Weibull 5694.4 37.8 37.8  
Multi 5656.6 0 0 

NP Gamma 5753.5 40.3 96.9  
Lognormal 5732.9 19.8 76.3  
Weibull 5748.6 35.5 92  
Multi 5713.1 0 56.6 
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Figure 3-3. Parameters for best fitting models under the three pooling scenarios for 
1000 bootstrap replicas. Complete pooling approaches showed best fitting 
models under the lognormal (panel A.) and weibull (B.) distributions, but no 
models under a gamma distribution. C)-E) Panels show placement of best 
fitting models under the three distributions with each color representing a 
different social group. Under the NP scenario (panels F.-H.) individuals 
belonging to the same social group are represented with a different shape, 
but the same color. Every dot in these panels represents only the model with 
the lowest BIC for that particular bootstrap. 
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Figure 3-4. Percent support for the different distribution models at the three pooling 
levels. The percent support is based on 1000 bootstrapped replicas for each 
scenario. Labels on the x axis show the best fitting model for the original 
datasets. A) percent support at the three pooling levels, with CP having over 
50% support for the lognormal distribution, in agreement with the model fit to 
the complete dataset. PP and NP scenarios show 100% support for the multi-
distribution model, which considers the best fitting model for each family 
group or individual, respectively. B) Percent support for each submodel in the 
family groups. C) Support for each submodel at the individual level. 
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Figure 3-5. Distributions of 𝛥𝐵𝐼𝐶 values for models under the three different pooling 
scenarios. Best fit model is aligned at y = 0, thus in the case of the PP and 
NP scenario, the orange bar at y=0 is actually the 𝛥𝐵𝐼𝐶 value being zero for 
the multi-distribution model for all bootstraps. The violin plots describe the 
density of 𝛥𝐵𝐼𝐶 units away from the best model. The box overlay shows the 
median, and lower and upper quartiles of this distribution for the three 
different pooling levels. 
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Table 3-2.  Summary values of the distance between the best model, with BIC = 0, to 
the second-best model, for all bootstrap replicas across the three pooling 
scenarios. 

Model minimum median mean q2.5 q97.5 

CP 0.05 15.45 18.44 0.73 50.50 
PP 1.49 24.10 24.36 6.86 44.10 
NP 2.17 27.60 26.93 9.18 43.40 

  

 

 

Figure 3-6. Parameters estimated for a wrapped Cauchy distribution for relative angles 
for individuals, and social groups across the different pooling levels. Color is 
used to describe the social groups to which individuals belong to. The orange 
line on both plots represents the parameter values estimated using all the 
data under the complete pooling approach. 
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