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Abstract  
 

Seed dispersal is a fundamental process in plant ecology and due to its 

importance in shaping plant distribution and communities, various modelling 

approaches have been developed to predict seed movement and dispersal processes. 

Frugivore-generated seed dispersal patterns are largely influenced by animal 

movements, and the intraspecific variation in animal movement and behaviors. In 

particular, long-distance seed dispersal (LDD) plays a significant role in determining 

genetic diversity and range expansion in plants. As frugivores can travel long distances 

and transport seeds with them, animal-mediated seed dispersal is a key component of 

LDD events. In this study we seek to understand the implications of individual variation 

in animal movement rates and how these can impact estimates of long-distance seed 

dispersal by changing the heaviness of tails in dispersal kernels. We use a simulation 

approach to explore the effects of intraspecific variation estimating parameters from 

empirical data for the araçari, Pteroglossus pluricintus, one of the primary frugivores for 

the Amazonian canopy tree Virola flexuosa. We combine animal movement data and 

gut retention time to simulate Virola seed dispersal with an individual-based model on a 

homogeneous unbounded landscape. This approach showed that variation in individual 

araçari movement rates directly influences the shape of estimated seed dispersal 

kernels and the number of long-distance dispersal events for Virola seeds. Additionally, 

to infer the tail behavior of generated seed dispersal kernels under varying levels of 

disperser heterogeneity, we include an approach using statistics of extremes, which is 

rarely used to explore species interactions in the ecological field. We found that models 

ignoring underlying variation in animal movement rates are unable to predict seeds 
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reaching distant locations (beyond 5km) and underestimate the variance of dispersal 

kernels and percentage of long-distance seed dispersal events. We suggest that the 

modeling approaches described in this paper can be a simple method to incorporate 

intraspecific variation of animal movement in future frugivore-generated seed dispersal 

kernels. 

 

 



 

3 

CHAPTER 2 
CONSEQUENCES OF INCORPORATING HETEROGENEITY IN ANIMAL 

MOVEMENT RATES INTO MODELS OF SEED DISPERSAL 

The importance of the variance in community ecology has started to resurface. 

Despite being recognized as a major driver of diversity in the 1970s, intraspecific 

variation has largely been ignored in community ecology over the last few decades 

(Violle et al. 2012; Holyoak & Wetzel 2020). Variation, or heterogeneity, has long been 

considered a property of ecological systems that might contain as much ecological 

information as do averages and regularities in nature (Pielou 1969). However, 

ecological models typically focus on trait means and assume that individuals within a 

species are interchangeable (Bolnick et al. 2003, 2011), an assumption that can 

mislead our understanding of ecological dynamics or create bias in ecological estimates 

(González-Varo & Traveset 2016). Ignoring individual variation can significantly impact 

the way we understand species interactions and connectedness (Poisot et al. 2015), or 

the way individuals respond to fluctuating climatic conditions (Lewis & King 2017). In 

particular, ignoring individual heterogeneity may affect predictions of rare interactions or 

occurrence of extreme events, which are determined by variation around the mean and 

not a population’s average (Gaines & Denny 1993; Nathan et al. 2008; Denny 2017). 

The impact of more frequent extreme events in ecological processes has also been 

demonstrated in population dynamics modeling; when individual heterogeneity is 

phrased as demographic stochasticity it shapes extreme events and as a consequence, 

quasi-extinction dynamics (Ferguson & Ponciano 2015).  

Seed dispersal mutualisms may be a particularly attractive system to study the 

effects of individual heterogeneity on species interactions, as reliance on species 

averages is a current limitation in the study of plant-seed disperser mutualisms (Schupp 
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et al. 2017; Zwolak 2018). Seed dispersal is one of the most critical stages in plant life 

history – it results in a spatial pattern of seed deposition which acts as a template that 

will define the distribution of plants and, consequently, community structure (Howe & 

Smallwood 1982; Terborgh & Wright 1994; Nathan & Muller-Landau 2000). In seed 

dispersal mutualisms, frugivore behavior, physiological traits, and movement patterns 

largely influence the spatial deposition of the seeds they carry (Côrtes & Uriarte 2013). 

Several studies have explored how fragmenting landscapes (Levey et al. 2005; 

Damschen et al. 2008; Jones et al. 2017), varying levels of plant aggregation (Morales 

& Carlo 2006; Pegman et al. 2017), or frugivore behavior (Russo & Augspurger 2004; 

Westcott et al. 2005; Russo et al. 2006; Karubian & Durães 2009; Sasal & Morales 

2013) impact seed deposition patterns. Recent work has also emphasized the 

importance of considering seed disperser communities or assemblages, as the 

contributions to seed dispersal across species vary significantly (Jordano et al. 2007; 

Schupp et al. 2010; Rehm et al. 2018). However, less attention has been devoted to 

understanding how complex animal behavior, movement, or individual heterogeneity in 

frugivores may impact seed dispersal distances and deposition patterns (Côrtes & 

Uriarte 2013; Snell et al. 2019; Zwolak & Sih 2020).  

Of particular importance, understanding the effects of individual variation in 

frugivore movement on long-distance seed dispersal can inform models of community 

assembly at larger scales. Long-distance dispersal events are a key process in shaping 

landscape-level characteristics such as population spread, gene flow between 

populations, establishment in new micro-habitats (Ouborg et al. 1999; Nathan & Muller-

Landau 2000; Jordano 2017), and they can also determine a plant population’s ability to 
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adapt to a rapidly changing climate (Kremer et al. 2012; González-Varo & Traveset 

2016).  Even though it has been suggested that different frugivore species may 

contribute disproportionately to long-distance dispersal events (Jordano et al. 2007), 

and that individuals differ in how far they move and disperse seeds (Lenz et al. 2011), 

little work has been done to understand how individual heterogeneity might contribute to 

long-distance seed dispersal. 

In this paper, we focus on the consequences of incorporating intraspecific 

variation in animal movement rates over seed dispersal distances and patterns. 

Specifically, we developed a spatially-explicit individual-based model to explore how 

differences in animal movement rates could influence seed dispersal deposition and the 

parameters of distribution functions associated to dispersal distances. Individual-based 

models are commonly used to understand the maintenance and generation of diversity 

(Levi et al. 2019), and in the seed dispersal literature they are used to develop a 

mechanistic understanding of the plant-seed disperser mutualism across changing 

landscapes, or disperser behaviors (Russo & Augspurger 2004; Levey et al. 2005; 

Morales & Carlo 2006; Will & Tackenberg 2008; Jones et al. 2017; Pegman et al. 2017; 

Holbrook & Smith 2000; Bialozyt et al. 2014). Using a simple simulation model, we 

explore how to incorporate this individual heterogeneity via pooling approaches 

(Langrock et al. 2012), using previously collected data from the the many-banded 

araçari, Pteroglossus pluricinctus, one of the primary frugivores of the Amazonian 

canopy tree Virola flexuosa (Holbrook & Loiselle 2007, 2009). We consider three 

different pooling levels to incorporate no variation in movement rates, variation 

constrained by social groups, and variation at the individual level. Our findings show 
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that incorporating individual heterogeneity in disperser movement rates can be 

recognized in the outcomes of simulation models through differences in the number of 

long-distance seed dispersal events, greater variance and heavier tails in the 

distribution of seed dispersal distances. Our research also demonstrates the importance 

of framing the study of rare events in seed dispersal ecology within the context of 

extreme value theory in statistics to better predict the changes in probabilities of seeds 

dispersing extreme distances. 

Methods 

Simulation Approach: An Overview 

To study the effects of individual variation in animal movement on final dispersal 

distances of foraged seeds, we developed a stochastic, spatially-explicit and individual-

based modeling framework in a homogenous landscape consisting of a single source 

tree.  After “consuming” five seeds from the source tree, our model animals would move 

and deposit the seeds at random.  To parameterize and run the model using realistic 

values (see “Study Design and Model Parameterization” section below) we used 

empirical movement metrics obtained from a radio-tagging study of various toucan 

species, including Pteroglossus pluricinctus (Holbrook 2011). We also used available 

estimates of the seed retention times for toucans that ingested tagged seeds of Virola 

flexuosa, a tropical plant belonging to the nutmeg family (Holbrook & Loiselle 2007; 

Holbrook 2011).   

Here, a simulation approach is useful in as much as it represents an effort to 

understand the factors that contribute to variation in seed shadows, which are the 

spatial distribution of seeds dispersed from a single plant.  Seed shadows are studied 

using Seed Dispersal Kernels (SDKs heretofore), which are probability models used to 
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describe the chances that a seed is dispersed or deposited at a specific distance away 

from its parent plant (Nathan & Muller-Landau 2000). Dispersal kernels in nature tend to 

be leptokurtic, with a peak near the origin and long tails (Morales & Carlo 2006). 

Although the seed dispersal process could be conceptualized/summarized using a long 

series of complex steps, here we hypothesized that any given SDK is the result of three 

key components: 1) the accumulation of a series of movement bouts per unit time (one 

minute in our case) of an animal after ingesting a seed, 2) the movement angle 

accompanying each movement bout of the animal, and 3) the gut retention time (GRT, 

the time that ingested seeds stay inside the frugivore until they are dropped).  As we 

describe below, we modeled all three components as random variables, and used a 

stochastic simulation to generate seed shadows using the Pretoglossus pluricinctus and 

Virola flexuosa system.  A single simulation run of our model consisted of a virtual 

animal (a bird) ingesting five seeds, then allowing it to move at random through the 

landscape in one-minute bouts until it had “dropped” all five seeds. Our program 

recorded each animal’s trajectory as well as the seed dropping locations (Figure 1A).  

We used our simulation program to calculate dispersal and dispersion measures (Figure 

1, panels B and C), and estimated parameter values for seed dispersal kernels (Figure 

1, panel D). We used this information to test the hypothesis that individual variation in 

the movement distance rate per unit time ultimately resulted in highly leptokurtic and 

long tailed SDKs as opposed to the SDKs obtained under the assumption of 

homogeneity in animal movement rates.  Specifically, we evaluated the differences in 

the SDKs resulting from assuming i) that all virtual toucans in a large flock feeding from 

a single source tree had identical movement rates per minute, ii) movement rates of 
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virtual toucans would be bound by the average movement rate of their social group, as 

these toucans often forage with their social group, or iii) that each individual toucan had 

its own movement rate different from others.   

Study Design and Model Parameterization 

To estimate movement rates and gut retention times, we focused on available 

empirical data on the many-banded araçari (Pterglossus pluricinctus), a small toucan, 

and its role as a frugivore of the Virola flexuosa tree. Previous studies by Holbrook 

(2011) collected radiotracking information for various dispersers over a period of four 

years, from 2001 to 2005, in the Ecuadorian Amazon rainforest. The methodology 

consisted of capturing and radio-tagging individuals from various toucan species, 

including Pterglossus pluricinctus and two larger Ramphastids, although data on the 

latter were scarce. Location recordings were attempted every 15 minutes, but due to 

field conditions, this time frame wasn’t always possible, leading to location recordings at 

uneven time intervals. To manage this heterogeneity in time between locations, we 

estimated movement rates, which are described as the average number of meters 

moved per minute over the entire tracking period for each tracked individual (Holbrook 

2011). We used a threshold of 30 movement bouts, to estimate an individual’s 

movement rate, for which we had data on 12 individuals. A movement bout is the 

movement between two consecutive point locations. Because Pteroglossus pluricinctus 

individuals tend to forage in social groups, we also calculated movement rates at the 

social group level by averaging the movement rates of the individuals belonging to a 

given social group (Table 2-1).  

We simulated three different scenarios by varying the movement rate of 

individual animals. We considered different pooling approaches, meaning that the data 
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used to estimate the movement rate were grouped at different levels with each scenario 

(Langrock et al. 2012). The first scenario consisted of a ‘complete pooling’ approach, in 

which a single movement rate is used for all individuals. The second scenario followed 

‘partial pooling’, where movement rates for individuals were constrained by the 

distribution of movement rates within social groups. The final scenario incorporated 

individual variation with a ‘no pooling’ approach, where each individual had its own 

movement rate (See Figure 2-2). The movement rate is the inverse of the average 

distance moved in one minute, and thus it is used as the parameter in an exponential 

distribution to sample an animal’s movement distance at every time step in the 

simulation run (See simulation description below). 

The movement rates calculated from the data were used to run our simulations in 

the following manner. 1) We fitted a lognormal distribution to the movement rates for the 

twelve individuals to describe what we consider the population’s distribution of 

movement rates (Figure 2-2). 2) For the complete pooling scenario, we calculated the 

expected value of the fitted lognormal distribution and used it as the single movement 

rate for those simulations. 3) In the case of the partial pooling, due to the low number of 

individuals per social group, we used the social group’s movement rate as the 𝜇 

parameter in a lognormal distribution and used the variance (𝜎2) of the fitted distribution 

in step 1 to describe the distribution of movement rates for a given social group (Figure 

2-2). 4) From each of the seven movement rate distributions associated for each social 

group, we sampled six movement rate values, and used them as the members of each 

social group in the partial pooling scenario. 5) Finally, for the no pooling scenario, we 
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sampled 30 individual movement rates from the lognormal distribution fitted in step 1 

(Figure 2-2).  

Parameter values for gut retention time were also based on empirically collected 

data from previous passage trials carried out with Pteroglossus pluricinctus individuals 

(Holbrook & Loiselle 2007). These passage trials were performed on four individuals 

captured in the field, held for two days, and fed Virola flexuosa seeds, which were 

marked with cotton threads and placed inside papaya cubes. Gut retention times were 

calculated based on seed ingestion and regurgitation times of tagged seeds. The 

distribution of gut retention times is best described with a fat-tailed distribution (Morales 

& Carlo 2006), thus we fit a gamma distribution to the field data on gut retention times, 

and estimated the gamma parameters, assessing goodness of fit visually using 

QQplots. We used this gamma distribution to later sample gut retention times for each 

seed in our simulation runs (Figure 2-3). 

Simulation Description  

Each simulation run started with the animal at the origin with the source tree, at 

location (0,0). At the beginning of the simulation run, the animal received five seeds, 

each seed with an associated gut retention time randomly sampled from the gamma 

distribution described in Figure 2-3. The simulation ran at one-minute intervals, and at 

every time step, a movement distance and movement angle determined the animal’s 

movement path (grey path in Figure 2-1). Movement distances were randomly sampled 

from an exponential distribution, using as a parameter, the inverse of the movement 

rate selected for that specific simulated animal. Movement rates were randomly 

sampled according to the scenario being simulated as shown in Figure 2-2. Movement 

angles were sampled at each time step from a random uniform distribution, thus the 
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simulated movement path had no specific directionality. Each simulation run allowed for 

the five seeds to be dropped at the animal’s location when the simulation reached each 

one of the gut retention times associated to each seed. The simulation run ended once 

all five seeds were dropped. We ran 100,000 simulation runs for each of the three 

pooling scenarios (complete, partial, and no pooling), with the number of simulations 

distributed evenly among the number of individuals for that particular scenario (42 in 

partial pooling and 30 in no pooling).  

Average Seed Dispersal and Aggregation Metrics 

We calculated seed dispersal distance as the Euclidean distance of each seed to 

the source plant. Given that our models only considered one parent plant located at the 

origin per simulation run, we calculated seed dispersal distance (DD) as the distance 

from each seed’s location to the origin as follows: 

𝐷𝐷𝑖 = √(0 − 𝑥𝑖)2 + (0 − 𝑦𝑖)2 
(1-1) 

where 𝐷𝐷𝑖 is the dispersal distance for seed 𝑖 in the simulation run, and 𝑥𝑖 and 𝑦𝑖 are 

that seed’s location coordinates in the landscape. As described above, every simulation 

run consisted of five seeds being dispersed by the virtual animal, each with 100,000 

simulation runs per pooling scenario, this meant we had 500,000 seeds dispersed for 

each pooling scenario. We calculated the average seed location per run, out of the five 

seeds dispersed in each run, and estimated the dispersal distance per run as the 

distance from the origin to the average seed location. We also used an aggregation 

metric to determine how evenly seeds would be dispersed across the landscape in each 

simulation run. We calculated seed dispersion as the average distance of each seed to 
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the mean seed location in each simulation run following methods in previous studies 

(Jones et al. 2017): 

𝑆𝐷𝑗 =
∑√(𝑥𝑚𝑗 − 𝑥𝑖𝑗)2 + (𝑦𝑚𝑗 − 𝑦𝑖𝑗)2

𝑛
 (1-2) 

where 𝑛 is the number of seeds for each simulation run (5 seeds), and 𝑥𝑚𝑗 and 𝑦𝑚𝑗 are 

the mean seed locations in the 𝑗 simulation run. Thus, for each pooling scenario we had 

100,000 values of average dispersal and seed dispersion. Given that seed dispersion is 

a measure of distances away from a spatial mean, an increase in seed dispersion for 

our study is equivalent to having seeds be deposited more evenly (Jones et al. 2017). 

We calculated mean and standard deviation for these metrics across all simulation runs 

for each pooling scenario to compare across models. 

Seed Dispersal Kernel Estimation 

Seed dispersal kernels are functions used to describe the probability of a seed 

being dispersed or deposited at a specific distance away from its parent plant (Nathan 

and Muller-Landau 2000). The resulting data from our three simulation models provided 

a dispersal distance for each simulated seed, and thus we used this information to 

describe the seed dispersal kernels for the model of each pooling scenario. Dispersal 

kernels in nature tend to be leptokurtic, with a peak near the origin and long tails, 

therefore kernel shape can be summarized by its kurtosis (Morales and Carlo 2006). 

We quantified the dispersal kernels produced in our three models by calculating the 

mean and standard deviation, kurtosis, maximum dispersal distance, and percentage of 

long-distance dispersal events for each of the pooling scenarios. To classify dispersal 

distances as long-distance events, we used a threshold of 500m based on previous 

work associated to this specific system (Holbrook & Loiselle 2007). In addition to this, 
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we also fit a Weibull probability distribution, commonly used in dispersal ecology as it is 

flexible enough to accommodate variability in the tails and provide informative 

parameters associated to the mean dispersal distance and heaviness of the tail 

(Morales & Carlo 2006). Given that we had a large number of simulated seeds, we fit 

Weibull distributions to random Monte Carlo subsamples in each scenario. This means 

that for each pooling scenario, we sampled 100 seeds and fitted a Weibull distribution to 

their distance from the origin. We repeated this process 1000 times for each pooling 

scenario and compared the distribution of shape and scale parameters across pooling 

scenarios using the non-parametric kernel density estimation from the `kde1d` package 

in R (Nagler & Vatter 2020) and calculating their mean and 95% confidence intervals. 

To fit the data associated to seed dispersal distances via Maximum Likelihood we used 

the function ‘fitdist()’ from the package ‘fitdistrplus’ (Delignette-Muller & Dutang 2015) in 

R using the following probability density function: 

𝑊(𝑥) = (
𝑎

𝑏
) (

𝑥

𝑏
)
𝑎−1

exp⁡[−(𝑥/𝑏)𝑎] 
(1-3) 

The estimated shape and scale parameters determine the tail of the distribution, and the 

location of the peak of the distribution respectively. It is worth noting that the standard 

parameterization of the Weibull distribution in ‘R’ is different from the parameterization 

used in Morales and Carlo (2006), where the shape parameter 𝑎 = 𝜈 remains the same, 

but the scale parameter is defined as 𝜅 = 𝑏−𝜈, giving a density distribution function of 

𝑊(𝑟) = 𝜅𝜈𝑟𝜈−1 exp[−𝜅𝑟𝜈].  We can note that for 𝑎 = 𝜈 = 1 the distribution shows a tail 

with exponential decay, with values of 𝜈 > 1 the tail shows fast-decay or thin tail, and 

when 𝜈 < 1 we can see a fat-tailed distribution (Morales and Carlo 2006). 
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More recently, statistics of extremes have been used to model extended 

dispersal kernels of seeds and pollen (García and Borda-de-Água 2017) and in 

particular have been proposed to understand long-distance dispersal events (Rogers et 

al. 2019). In our particular case, we evaluated how an approach using statistics of 

extremes could help us fit the tail of the frugivore-generated seed dispersal kernels for 

each of the models we simulated. We used a peak over threshold (POT) approach, in 

which we filtered the dispersal distances above a given threshold and fit a Generalized 

Pareto (GP) distribution to those values (readers interested in more technical details 

associated to statistics of extremes should consult Coles 2013 for a general overview, 

or  García & Borda-de-Água 2017 for a seed dispersal specific text). The advantage of 

using an extreme value distribution approach lies in the fact that seed dispersal 

distances that are too far from the mean might be considered as outliers with more 

conventional approaches, and thus their frequency not accurately predicted with 

commonly used dispersal kernels. However, we know that extreme long-distance 

dispersal events are not as rare, but their frequency is low when using conventional 

sampling approaches such as seed traps (Nathan & Muller-Landau 2000; Levey et al. 

2008). Therefore, a statistics of extremes approach for long-distance seed dispersal 

events can give us a better prediction of these events without underestimating their 

frequency.  

Initially, we defined long-distance dispersal events as any dispersal event over 

500m from the parent tree in order to compare our results to previous studies in this 

same ecological system (Holbrook & Loiselle 2007, 2009). We used this threshold to 

calculate the percentage of long-distance seed dispersal events. To select the threshold 
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for a POT approach, we used mean excess and diagnostic plots fitting the data to a 

sequence of thresholds, with the goal of finding the lowest threshold providing similar 

parameter values with the lowest variation around those estimated parameters. This is a 

useful quantitative approach to define long-distance dispersal events based on a 

specific biological system’s data (García & Borda-de-Água 2017). There still exists a lot 

of variation in methodologies to define what long-distance dispersal is, and this varies 

within biological systems as well (Jordano 2017). Thus, providing a method using data 

to establish the threshold is useful to compare the number or distribution of long-

distance dispersal events across studies in the future. To fit the Generalized Pareto 

distribution, we randomly sampled 10,000 seed distances from each of the pooling 

scenarios, and selected the appropriate thresholds using mean excess plots. We 

estimated shape and scale parameters for each dataset using the previously selected 

threshold. In the case of the Generalized Pareto, shape parameters below zero indicate 

a thin-tailed distribution with an upper limit, a shape parameter greater than zero 

corresponds to a heavy-tailed distribution with no upper limit, and shape parameters 

equal to zero follow exponential tails. Using the estimated parameter values for each of 

the three simulated data sets, we calculated conditional probabilities of seeds 

dispersing over 200, 500, 1000, and 5000 meters under the three pooling scenarios. We 

performed these analyses and fit Generalized Pareto distributions to the data via 

maximum likelihood using the package extRemes in R (Gilleland & Katz 2016). 

Results 

Average Seed Location and Dispersion Per Simulation Run 

Dispersal per run was calculated as the distance from the origin to the average 

seed location in each simulation run and average dispersal per run was highest in the 
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CP scenario at 175m (SD = 82.1m), followed by the NP scenario at 157m (SD = 95.3m), 

and last with the PP scenario at 141m (SD = 89.4m). The overall distribution of average 

dispersal per run across all three scenarios was similar (Figure 2-4), however, the 

density of outliers and maximum average dispersal distances was highest in the NP 

scenario, followed by the PP scenario. In the case of seed dispersion, higher values of 

seed dispersion indicate a more even seed deposition for each simulation run. When 

comparing the three pooling scenarios, we observe that the overall distribution of seed 

dispersion values is comparatively similar, with boxplot whiskers all falling under 200m 

of dispersion (Figure 2-4). Some differences are observed when focusing on the 

outliers, where the PP and CP scenarios have the largest dispersion values per run 

(614 and 602 respectively), although the NP scenario shows a higher density of values 

over 400m. A two-dimensional representation of these results is observed in Figure 2-4, 

where we observe the average seed locations per run for each of the three scenarios, 

all of them with a higher density of seed deposition close to the origin, and the NP 

scenario with the highest number of average seed locations falling outside the 500m 

LDD threshold from the origin.  

Estimated Seed Dispersal Kernel Functions 

We estimated parameter values of a Weibull distribution for 1000 random 

samples of 100 seeds from each of the simulation models corresponding to each 

pooling scenario and generated the seed dispersal kernel curves shown in Figure 2-5. 

When focusing on the tail of the distributions (Figure 2-5), we observe differences 

between the dispersal kernels generated under the three pooling scenarios, with the NP 

scenario having a higher number of kernels with heavier tails. The shape and scale 

parameters estimated for the dispersal kernels varied between pooling scenarios 
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(Figure 2-5), with the PP scenario having the lowest values for the estimated shape 

parameter, followed by the NP scenario. Although variation existed between the 

estimated shape parameters for the Weibull kernels, no shape parameters were smaller 

than 1, a value indicating a heavy tail. The estimated mean dispersal distance from the 

kernels showed the CP scenario having the highest values, followed by the NP 

scenario, and PP scenario last (Figure 2-5). The distribution of variance values 

estimated for each of the dispersal kernels was similar across pooling scenarios, 

however there was considerable variation in the outliers, with the NP scenario having 

the highest estimated variances.  

Seed dispersal distances generated by the simulations under the three pooling 

scenarios showed differences in kurtosis, with the NP and PP scenarios having higher 

kurtosis than the CP scenario (Table 2-2), alluding to a higher number of outliers or 

extremes in the scenarios incorporating levels of individual variation. Although the 

highest mean dispersal distance was found in the CP scenario, the maximum dispersal 

distance for an individual seed occurred in the NP scenario, which also had the highest 

percentage of seed dispersal events over 500 meters (Table 2-2).  

Analyzing Seed Dispersal Kernel Tails with A Statistics of Extremes Approach 

We selected thresholds specific for each of the pooling scenarios based on the 

distribution of the data, a subsample of 10,000 seed distances for each scenario. The 

threshold values selected from the mean excess plots are listed on Table 2-3, with the 

NP scenario having the highest threshold, followed by the CP scenario. Estimated 

shape and scale parameters followed the same pattern as did the Weibull parameters in 

the previous sections, with CP having the largest scale parameter, followed by NP, and 

PP last. However, in the case of the shape parameter, both CP and PP had shape 
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parameters smaller than zero, with the NP scenario’s shape parameter being greater 

than zero. The heavier tail estimated for the NP scenario is also represented when 

considering the conditional probabilities of a seed dispersal distance being over 1000 or 

5000 meters (Table 2-3). When focusing on the probability that a seed will be dispersed 

over 1000 meters from its parent plant, there is a difference of one order of magnitude 

between the three scenarios, with the NP scenario having the highest probability of 

depositing seeds over 1000 meters. When observing the most extreme case of seeds 

being deposited over 5000 meters from the parent plant, both the CP and PP scenarios 

have a zero probability of doing so under the Generalized Pareto tail fit, whereas the NP 

scenario has a very small, but nonzero, probability.  

Discussion 

Spatial patterns of seed dispersal are largely influenced by plant-specific traits, 

frugivore characteristics and behaviors, and interactions with the landscape (Schupp & 

Fuentes 1995; Nathan & Muller-Landau 2000). Frugivore-generated seed dispersal 

kernels have been used to estimate seed dispersal distances in multiple studies (Levey 

et al. 2005, 2008; Morales & Carlo 2006; Russo et al. 2006; Will & Tackenberg 2008; 

Jones et al. 2017), often with the goal of understanding how incorporating animal 

movement and behavior will impact seed dispersal distances. Usually, the focus tends 

to be on seed dispersal and how spatial patterns of seed aggregation can change in 

response to animal behavior or landscape heterogeneity. However, fewer studies have 

emphasized the role of intraspecific variation in animal movement over generated seed 

dispersal patterns, or even the relative importance that different disperser species may 

have in carrying seeds and contributing to seed dispersal patterns (Rehm et al. 2018; 

Zwolak 2018). Various modeling and simulation approaches have been developed to 
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understand how the interactions between landscape heterogeneity and frugivore 

characteristics affect seed deposition patterns (Levey et al. 2005; Russo et al. 2006; 

Jones et al. 2017), and others, like Levi et al. (Levi et al. 2019) have implemented 

mechanism-free simulations that highlight the importance of rare and long-distance 

seed dispersal events like the ones we have modeled here. Additionally, there is a lack 

of focus in the literature on the complexity of animal movement and how it influences 

seed dispersal and plant population dynamics across multiple scales (Côrtes & Uriarte 

2013). We found that by incorporating different levels of movement heterogeneity 

across individual frugivores, seed dispersal and aggregation metrics changed. Overall, 

our simulated seed dispersal kernels showed that an increase in variation of animal 

movement rates markedly influenced the heaviness of the tail in dispersal kernels: the 

greater the heterogeneity, the more relevant long-dispersal events are. Additionally, by 

increasing the level of variation in animal movement rates, we observed increases in the 

kurtosis and estimated variance of dispersal kernels, having direct implications for the 

number of predicted long-distance dispersal events. Using a statistics of extremes 

approach, our results show that predicting extreme seed dispersal events is more likely 

under scenarios that incorporate individual variation in animal movement rates. 

Understanding the consequences of individual variation in animal movement is a critical 

step to incorporate our local scale predictions on regional and community level models 

of population dynamics.  Although extreme value theory has long been used in other 

areas of biology to better understand the maintenance and generation of genetic (virus) 

variants (Orr 2005), its use in modeling the ecological processes related to seed 

dispersal is still in its infancy. 
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The Effect of Variation in Animal Movement Over Seed Deposition Patterns 

Average seed locations for simulations across all three pooling scenarios were 

between 140 and 175 meters, with standard deviations of over 100 meters, generating 

significant overlap in the average distribution of seed dispersal measures for the three 

pooling scenarios (Figure 2-4). Previous studies on this system have found that the 

majority of dispersed seeds are dispersed beyond 100 meters of the parent plant 

(Holbrook & Loiselle 2007). However, a focus on the seed dispersal data points beyond 

the upper quartile shows differences between the pooling scenarios, with the NP 

scenario having a higher density and larger extent of average dispersal per run. A 

similar result was found when comparing seed dispersion, a metric of spatial 

aggregation, which at higher levels represents a more even distribution of seeds (Jones 

et al. 2017).  The overall distribution of the dispersion points per simulation run was 

comparable across scenarios. This result might be explained by the fact that we used a 

simple uncorrelated random walk for animal movement, in a homogeneous unbounded 

landscape, thus leading to a highly even pattern of radial seed deposition. When 

focusing on seed dispersion data points beyond the upper quartiles, it is unclear if 

differences across simulation scenarios persist. In addition to gut retention time, seed 

aggregation is also determined by landscape characteristics such as fragmentation 

(Levey et al. 2005; Morales & Carlo 2006; Carlo & Morales 2008a; Jones et al. 2017). In 

our frugivore-plant system, however, the forested landscape was intact and no 

anthropogenic barriers to animal movement were present. 
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Implications of Animal Movement Heterogeneity Over Seed Dispersal Kernels 

Dispersal kernel shape and scale parameters have significant implications for 

ecological and evolutionary processes (Nathan & Muller-Landau 2000; Nathan 2007). 

Specifically, dispersal kernel shape can largely determine the extent to which seeds will 

get dispersed, thus predicting the probability of LDD events (Morales & Carlo 2006; 

García & Borda-de-Água 2017). The simulation scenarios that included variation in 

animal movement rates had larger percentages of dispersal events beyond 500m 

(Table 2-2) as well as higher kurtosis than the CP scenario, which had a single 

movement rate for the simulations. We observed this finding again as the NP scenario 

also holds the largest seed dispersal distance for an individual seed, despite the 

average seed dispersal distance for this scenario, not being the largest one. By 

incorporating individual variation in movement rates of frugivores, we obtain highly 

leptokurtic dispersal kernels, an increasing in the number of outliers and also an 

increasing in the number of predicted long-distance dispersal events. This qualitative 

difference between scenarios was replicated in the distribution of the shape parameters, 

which largely determine the heaviness of the tail for the dispersal kernels (Figure 2-5). 

Although none of the shape parameters fell below 1, a threshold that determines a 

heavy tail, shape parameters for the PP and NP scenarios have lower values, leading to 

heavier tails when compared to the CP scenario. This difference becomes more evident 

as we analyze the estimated mean and variances generated from these dispersal 

kernels (Figure 2-5). Although the estimated mean for dispersal kernels under the CP 

scenario is larger than the estimates under the PP and NP scenarios, the estimated 

variance is larger for the dispersal kernels generated by models incorporating varying 

levels of individual heterogeneity in frugivore movement. This individual variation in 
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movement has a noticeable effect on higher moments (variance and kurtosis) at the 

seed dispersal scale, which is not noticeable when we are focusing on just the mean. 

When analyzing the tail of the distributions with the statistics of extremes 

approach, this difference becomes clearer. The NP scenario is the only one with an 

estimated shape parameter greater than 0, indicating a Generalized Pareto heavy tail. 

This result becomes more evident with the predicted probabilities of seed dispersal 

beyond 1000 and 5000m (Table 2-3). Even though these probabilities are small, they 

are not unreasonable, as under these predictions 1 in every 1000 seeds will fall beyond 

1km over the estimated threshold for the NP scenario, 2 in every 10,000 seeds for the 

PP scenario, and 4 in every 100,000 seeds for the CP scenario. These predictions also 

show that no seeds are expected to be deposited over 5km for both the CP and PP 

scenario, however 7 in 1012 seeds are predicted to be deposited beyond this distance 

for the scenario including individual heterogeneity in disperser movement rates.  

Variation in Animal Movement Effects Over Community Dynamics 

The importance of  long-distance dispersal for plant community genetic variation 

and recolonization is broadly recognized (Cain et al. 2000; Levey et al. 2008; Jordano 

2017), and understanding how we can better model and predict these rare events can 

guide future efforts in restoration and conservation biology. Previous studies have also 

recognized the need to carefully address the complexities of animal behavior and 

movement patterns (Russo et al. 2006; Côrtes & Uriarte 2013; Zwolak 2018; Nield et al. 

2019, 2020), as the variation in disperser traits can directly impact seed dispersal 

patterns. It is also necessary to consider that seed dispersal mutualisms do not occur in 

closed environments, and multiple disperser species will benefit multiple plants though 

seed dispersal services; considering how these multiple species interact and differ in 
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their movement patterns is an important focus for further study (Rehm et al. 2018, 

2019).  

Although novel network approaches can be a path forward to model disperser 

communities, the question remains of how individual heterogeneity will influence long-

distance seed dispersal events. In particular, incorporating complexity and variation in 

disperser movement and behavior is necessary to be able to account for the 

disproportionate influence that some frugivores may have on the number of long-

distance dispersal events and consequently on the effect over plant population 

dynamics and gene flow (Jordano et al. 2007). Novel network approaches or modeling 

techniques in the seed dispersal literature need to explicitly consider rare events and 

incorporate statistics of extremes to truly understand these ecological processes vary 

across scales. In our simulation study, the hierarchy of the CP, PP, and NP levels of 

variation in movement rates are distinguishable across the generated seed dispersal 

kernels. The effects of individual variation in movement needs to be extended to models 

of spatial community dynamics, where it is expected that rare events will lead to 

different outcomes.  

We have shown that individual differences in frugivore movement can have 

significant consequences on the number of long-distance seed dispersal events and it 

remains to be explored how these individual differences can influence population 

dynamics in the long term and at larger spatial scales. These extreme dispersal events 

create a link between local and regional dynamics that are yet to be explored. 

Incorporating individual variation in animal movement models is an active area in the 

movement ecology field, with various approaches being developed to incorporate this 
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heterogeneity in hierarchical frameworks (Börger & Fryxell 2012; Bastille-Rousseau et 

al. 2016). By not including disperser individual heterogeneity effects over seed 

dispersal, we might be missing part of how these different ecological scales are 

connected.   
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Figure 2-1. Simulation process overview and seed dispersal measures.  Panels A 
through C represent one simulation run, whereas panel D shows the results 
from 100 simulation runs. A) An animal starts at the origin (coordinates (0,0) 
represented by the teal dot) where it ingests five seeds. The animal moves in 
the landscape (grey trajectory path) and drops seeds (black diamonds) as it 
reaches their gut retention time. B) The mean seed location per run is 
calculated and shown in the orange square. The distance of each seed to the 
mean location is used to calculate seed dispersion as described in the main 
text. C) Average seed dispersal per run (black dashed line) is calculated as 
the distance from the origin (teal dot) to the mean seed location (orange 
square). Seed dispersal distance for each seed (teal dashed lines) are 
calculated as the distance of each seed from the origin. D) Seed dispersal 
distances for each seed in 100 simulation runs are used to generate a seed 
dispersal distance histogram. A Weibull distribution is fit to the data to 
describe the seed dispersal kernel. 
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Table 2-1. Movement rates for the twelve tagged individuals from data collected by 
Holbrook (2011). Movement rate for individuals is calculated as the distance 
moved in meters per minute for every movement bout, averaged across all 
observations during the tracking period. In the case of social groups, the 
movement rate is calculated as the average for all movement bouts across all 
individuals belonging to that social group. Movement rate units are in meters 
displaced per minute.  

 
Tag ID n. observations Movement rate Social group Movement rate 

1 42 30 f1 40.1 

3 76 41.9 

5 42 47.1 

7 68 25 f2 25 

13 58 31.2 f3 29.4 

19 53 27.3 

22 43 27.8 f4 27.8 

28 38 17.9 f5 17.9 

49 84 20.2 f6 26.1 

84 80 32.2 

29 32 20.9 f7 16.5 

30 48 13.6 
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Figure 2-2. Fitted distributions to movement rate data from estimated from radiotracking. 
A) lognormal distribution fitted to the twelve data points of movement rate. B) 
Lognormal distributions for each social group. C) movement rates used for 
each of the pooling scenarios. 
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Figure 2-3. Description of gut retention times using field data for four individuals, shown 

by each dot along the x axis. The density curve fitted corresponds to a 
gamma distribution with parameters shape = 2.0562 and scale = 13.8688. 
This gamma distribution is later used to sample gut retention times for 
simulations.  
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Figure 2-4. Average dispersal and dispersion for simulation runs. A) Dispersal per run is 
calculated as the distance from the origin to the average location of the 5 
seeds in that run. The average seed location is then used to calculate 
dispersion as the distance of each seed to the average seed location in that 
run. Overall distribution of average dispersal is similar across scenarios, with 
differences in the density and location of outliers, with the furthest average 
dispersal at 1222m in the NP scenario. B) Seed dispersion per run in the 
three pooling scenarios. Higher values of dispersion represent more even 
distribution of seeds per simulation run. The overall distribution of dispersion 
data points is comparable across scenarios. When we focus on outliers, we 
observe a higher density of points past 400m of dispersion in the NP 
scenario, however the most extreme outliers belong to the PP, and CP 
scenarios. C) Average seed locations per simulation run.  
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Figure 2-5. Estimated seed dispersal kernels and distribution of parameter values for 

the three pooling scenarios. A) Seed dispersal kernel curves for 1000 random 
samples of 100 seeds for each of the pooling scenarios based on fitting a 
Weibull probability density function to the data. B) Focus on the tails of the 
dispersal kernels, where the dashed lines are used for guiding purposes only. 
The NP scenario (blue) has a higher density of heavy tailed kernels, when 
compared to the other two scenarios. C) Each dispersal kernel is modeled 
using a Weibull distribution where estimated parameter values are obtained 
for each of the 1000 random samples. For the shape and scale parameters, 
we calculate the mean and their 95% confidence intervals generated from a 
non-parametric kernel density estimation to the 1000 parameter values 
obtained from the 1000 Weibull fits. D) Calculated expected value (mean) and 
variance for each of the kernel density curves using the scale and shape 
parameters obtained from the Weibull distribution fits. Overall distribution of 
variance for the three scenarios is similar, with the number and extent of 
outliers for the NP scenario being relatively higher. 
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Table 2-2. Summary table on seed dispersal distances for each of the pooling 
scenarios. For each of the scenarios, the metrics reported in this table are 
based on the 500,000 seeds deposited under each of the simulated 
scenarios.  

Model Mean Dispersal Distance 
(SD) 

Kurtosis Maximum 
Dispersal 
Distance 

Percent Dispersal events over 500 
m. 

CP 174.5(120)m 5.53 1344 1.878% 
PP 140.8(120)m 8.74 1606 1.586% 
NP 156.8(130)m 8.87 1716 2.23% 

 
Table 2-3. Estimated parameter values and standard errors associated with those 

estimates after fitting a Generalized Pareto Distribution to dispersal distances 

falling above a given threshold () for each of the three simulated pooling 
scenarios. A random sample of 10,000 seed dispersal distances was selected 
from each simulated data set to estimate the Generalized Pareto Parameters. 
From the fitted distributions, we calculated conditional probability of seeds 
dispersing beyond 200, 500, 1000, and 5000 m.  

Model Scale Shape Pr(X≥200m) Pr(X≥500m) Pr(X≥1km) Pr(X≥5km) 

CP  

( = 119) 
131.97 
± 2.07 

-0.087 ± 
0.009 

0.53 0.036 4.73 × 10−5 0.00 

PP  

( = 99) 
113.77 
± 2.19 

-0.012 ± 
0.014 

0.41 0.027 2.46 × 10−4 0.00 

NP  

( = 156) 
118.70 
± 2.70 

0.034 ± 
0.016 

0.69 0.063 1.70 × 10−3 7.23 × 10−12 
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